ACHARYA NAGARJUNA UNIVERSITY

A State Government University, Accredited with "A" Grade by NAAC Nagarjuna Nagar - 522 510, Guntur, Andhra Pradesh, India.

M.Sc. ELECTRONICS &

INSTRUMENTATION

TECHNOLOGY

SYLLABUS

2022 - 2023 onwards

UNIVERSITY COLLEGE OF SCIENCES

PROGRAM CODE:

ANUCS08

ACHARYA NAGARJUNA UNIVERSITY (ANU)

- A Brief Profile

Acharya Nagarjuna University, a State University established in 1976, has been constantly striving towards achieving progress and expansion during its existence for over four decades, in terms of introducing new courses in the University Colleges, affiliated colleges and professional colleges. Spread over 300 acres of land on the National High Way (NH-16) between Vijayawada and Guntur of Andhra Pradesh, the University is one of the front ranking and fastest expanding Universities in the state of Andhra Pradesh. The University was inaugurated on 11th September, 1976 by the then President of India, Sri Fakruddin Ali Ahmed and celebrated its Silver Jubilee in 2001. The National Assessment and Accreditation Council (NAAC) awarded "A" grade to Acharya Nagarjuna University and also has achieved 108 International ranks, 39 National ranks UI Green Metrics rankings and many more It is named after Acharya Nagarjuna - one of the most brilliant preceptors and philosophers, whose depth of thought, clarity of perception and spiritual insight were such that even after centuries, he is a source of inspiration to a vast number of people in many countries. The University is fortunate to be situated on the very soil where he was born and lived, a soil made more sacred by the aspiration for light and a state of whole someness by generations of students. With campus student strength of over 5000, the University offers instruction for higher learning in 68 UG & PG programs and guidance for the award of M.Phil. and Ph.D. in 48 disciplines spread over six campus colleges and one PG campus at Ongole. It also offers 160 UG programs in 440 affiliated colleges in the regions of Guntur and Prakasam Districts. It has a Centre for Distance Education offering 87 UG & PG programs. Characterized by its heterogeneous students and faculty hailing from different parts of the state and the country, the University provides most hospitable environment for pursuing Higher Learning and Research. Its aim is to remain connected academically at the forefront of all higher educational institutions. The University provides an excellent infrastructure and on- Campus facilities such as University Library with over one lakh books & 350 journals; Computer Centre; University Scientific Instrumentation Centre; Central Research Laboratory with Ultra-modern Equipment; Well-equipped Departmental Laboratories; Career Guidance and Placement Cell; Health Centre; Sports Facilities with Indoor & Outdoor Stadiums and Multipurpose Gym; Sports Hostel; Separate hostels for Boys, Girls, Research Scholars and International Students; Pariksha Bhavan (Examinations Building); Computers to all faculty members; Wi-Fi connectivity to all Departments and Hostels; Canteen, Student Centre & Fast-food Centre; Faculty Club; Dr. H.H. Deichmann & Dr. S.John David Auditorium cum Seminar Hall; Post office; Telecom Centre; State Bank of India; Andhra Bank; Energy Park; Silver Jubilee Park; Fish ponds; internet center; xerox center; cooperative stores; Water harvesting structures.

ACHARYA NAGARJUNA UNIVERSITY

VISION

To generate sources of knowledge that dispels ignorance and establish truth through teaching, learning and research.

MISSION

To promote a bank of human talent in diversified faculties – Commerce & Management Studies, Education, Engineering & Technology, Humanities, Law, Natural Sciences, Pharmacy, Physical Education & Sports Sciences, Physical Sciences and Social Sciences that would become an investment for a prosperous society.

OBJECTIVES

- To inspire and encourage all who would seek knowledge through higher education and research.
- To provide quality instruction and research for the advancement of science and technology.
- > To promote teaching and research studies in disciplines of societal relevance.
- > To bridge the gap between theory and practice of the principles of higher education.
- > To develop human talent necessary for the industry.
- > To open up avenues of higher education and research through non-formal means.
- > To invite and implement collaborations with other institutes of higher learning on a continuous basis for mutual academic progress.
- To motivate and orient each academic department/centre to strive for and to sustain advanced levels of teaching and research so that the university emerges as an ideal institute of higher learning.
- To focus specially on the studies involving rural economy, justifying its existence in the rural setting.

VISION OF THE COLLEGE:

University College of Sciences envisages to be a good team of people with scientific temperament, research bent and a flair for Teaching & Learning for the betterment of the Community, Society, State and the Country at large.

MISSION OF THE COLLEGE:

The College intends to incubate and nurture the Leaders, Mentors, Educators and researchers who can transform the country and contribute to advances in science while addressing the challenges faced by the society for the betterment of human life.

DEPARTMENT OF ELECTRONICS & INSTRUMENTATION TECHNOLOGY M.Sc. ELECTRONICS & INSTRUMENTATION TECHNOLOGY

VISION OF THE DEPARTMENT:

To become center of excellence in higher learning and research to produce creative solutions to societal needs.

MISSION OF THE DEPARTMENT:

- To make the Department of Electronics and Instrumentation Technology a preferable destination for admissions.
- To provide quality technical education using modern tools in the field of Electronics and Instrumentation Technology
- To create competent and skilled professionals who are well trained to design, implement and control electronics & instrumentation efficient systems
- To strive for continuous improvement in the quality of academics and inculcate professional ethical values among the students and the faculty members.
- To make the Department of Electronics and Instrumentation Technology learning and agile centre to nurture the spirit of innovation, creativity and entrepreneurship among the students and the faculty members.

DEPARTMENT OF ELECTRONICS & INSTRUMENTATION TECHNOLOGY M.Sc. ELECTRONICS & INSTRUMENTATION TECHNOLOGY

PROGRAMME SPECIFIC OUTCOMES (PSO's):

After the completion of M.Sc., Electronics and Instrumentation Technology program, the students are expected to:

PSO1	Design, implement and test Electronics and Communication systems using analytical knowledge and applying modern hardware and software tools
PSO2	Develop their skills to solve problems and assess social, environmental issues with ethics and manage different projects in multidisciplinary areas.
PSO3	To implant the capacity to apply the concepts of Electronics, Instrumentations, DSP, VLSI, Control systems etc., in the design, development and implementation of application oriented engineering systems.
PSO4	Ability to work in a team in sharing the knowledge learned exhibiting the effective individual talent
PSO5	Expected to develop professional ethics and demonstrate commitment to professional ethics; Ability to engage themselves in lifelong learning and teaching process

PROGRAMME OUTCOME (PO's):

PO1	To Excel in professional career and/or higher education by acquiring knowledge
	in measurements, transduction and instrumentation engineering principles.
PO2	To enhance knowledge to design & develop advanced instrumentation and
	automation systems for remote monitoring and control applications.
PO3	Analyze real life problems, design data acquisition systems with computing
	platforms appropriate to Electronics and Instrumentation that are economically
	feasible and acceptable
PO4	To acquire soft skills through teamwork, presentations, seminar and dissertation.
PO5	To serve research and development organizations to solve the problems raised in
	the industries and society and involve in lifelong learning.

DEPARTMENT OF ELECTRONICS & INSTRUMENTATION TECHNOLOGY M.Sc. ELECTRONICS & INSTRUMENTATION TECHNOLOGY TWO YEAR M.SC. COURSE IN ELECTRONICS AND INSTRUMENTATION TECHNOLOGY (2022-2023) COURSE STRUCTURE

S. No.	Components of Study	Title of the Course	Title of the Paper	No. of Credits	Internal Assessment Marks	Semester end Examinations Marks	Total Marks
1.	Core-I	E&IT 1.1 (22)	Instrumentation Technology	4	30	70	100
2.	Core-II	E&IT 1.2 (22)	Advanced Analog and Digital Electronics	4	30	70	100
3.	Compulsory Foundation	E&IT 1.3 (22)	Sensors and Transducers	4	30	70	100
4.	Elective Foundation	E&IT 1.4 (a) (22) E&IT 1.4 (b) (22) E&IT 1.4 (c) (22)	1. Computer Programming in C2: Semiconductor Devices & Applications3. Network Analysis	4	30	70	100
5.	Practical-I		Analog and Digital Electronics	4	30	70	100
6.	Practical-II		Programming in "C" Language	550 4	30	70	100
	r	IOTAL	STATE OF STATE	24	180	420	600

SEMESTER-I

Elective Foundation – Choose one paper.

Components	Weightage (%)
(Internals I& II)	30
End Semester Exams	70

SEMESTER – II

S. No.	Components of Study	Title of the Course	Title of the Paper	No. of Credits	Internal Assessment Marks	Semester end Examinations Marks	Total Marks
1.	Core-I	E&IT 2.1(22)	Electrical and Electronic instrumentation	4	30	70	100
2.	Core-II	E&IT 2.2(22)	Control Systems and Automation	4	30	70	100
3.	Compulsory Foundation	E&IT 2.3 (22)	Microprocessors and Microcontrollers	4	30	70	100
4.	Elective Foundation	E&IT 2.4 (a) (22)	Bio-Medical Instrumentation	4	30	70	100
		E&IT 2.4 (b)(22)	Computer Architecture & Organization				
		E&IT 2.4 (c) (22)	Artificial Neural Networks and Fuzzy Logics		HARYANA		
5.	Practical-II		Transducer & Instrumentation Laboratory	4	3 0	70	100
6.	Practical-IV	11	Microcontrollers Laboratory	4	30	70	100
		TOTAL		24	180	420	600

Elective Foundation – Choose one paper

Components	Weightage (%)
(Internals I& II)	30
End Semester Exams	70

S. No.	Components of Study	Title of the Course	Title of the Paper	No. of Credits	Internal Assessment Marks	Semester end Examinations Marks	Total Marks
1.	Core-I	E&IT 3.1(22)	Analytical Instrumentation	4	30	70	100
2.	Core-II	E&IT 3.2(22)	Embedded System	4	30	70	100
3	Compulsory foundation	E&IT 3.3 (a) (22)	Digital Signal Processing	4	30	70	100
		E&IT 3.3 (b) (22)	Analog Communications				
		E&IT 3.3 (c) (22)	Optical Communications				
4	Elective foundation	E&IT 3.4 (a) (22)	Industrial and Process Control Instrumentation	4	30	70	100
		E&IT 3.4 (b) (22)	System On Chip Design	k	ANAGAR		
		E&IT 3.4 (c) (22)	Wireless Sensors & Networks				
5.	Practical-V		Advanced Instrumentation Laboratory	****	30	70	100
6.	Practical-VI		Embedded Systems Laboratory	ు ప్రతిష్ఠతమ్	30	70	100
		TOTAL		24	180	420	600

SEMESTER –III

Elective I – Choose one paper Elective II – Choose one paper.

Components	Weightage (%)
(Internals I& II)	30
End Semester Exams	70

SEMESTER –IV

S. No.	Components of Study	Title of the Course	Title of the Paper	No. of Credits	Internal Assessment Marks	Semester end Examinations Marks	Total Marks			
1.	Core-I	E&IT	PC Based	4	30	70	100			
		4.1(22)	Instrumentation with Lab							
			view							
2.	Core-II	E&IT	VLSI Design	4	30	70	100			
		4.2(22)								
3.	Practical-VII		Virtual Instrumentation	4	30	70	100			
			Laboratory							
4.	Project						300			
	Work*									
		TOTA	TOTAL							

Components	Weightage (%)
(Internals I& II)	30
End Semester Exams	3 70

SCHEME OF EXAM	IINATION					
TITLE OF THE PAPERSCHEME OF EXAMINATION						
	Internal Assessment	External Assessment	No. of Credits	Total Marks		
I SEMESTER			I			
E&IT-1.1: Instrumentation Technology	30	70	4	100		
E&IT-1.2: Advanced Analog and Digital Electronics	30	70	4	100		
E&IT-1.3: Sensors and Transducers	30	70	4	100		
E&IT-1.4(a): Computer Programming in C	30	70	4	100		
E&IT-1.4 (b) : Semiconductor Devices & Applications	30	70	4	100		
E&IT-1.4 (c) : Network Analysis	30	70	4	100		
Lab 1: Analog and Digital Electronics	30	70	4	100		
Lab 2: Programming in "C" Language	30	70	4	100		
II SEMESTER	R			•		
E&IT-2.1: Electrical and Electronic instrumentation	30	70	4	100		
E&IT-2.2: Control Systems and Automation	30	70	4	100		
E&IT-2.3: Microprocessors and Microcontrollers	30	70	4	100		
E&IT-2.4(a): Bio-Medical Instrumentation	30	70	4	100		
E&It-2.4(b) : Computer Architecture & Organization	30	70	4	100		
E&IT-2.4 (c) : Artificial Neural Networks and Fuzzy Logics	30	70	4	100		
MOOCS	11 %	S.				
Lab 3: Transducer & Instrumentation Laboratory	30	70	4	100		
Lab 4: Microcontrollers Laboratory	30 -	70	4	100		
III SEMESTE	R		I			
E&IT-3.1: Analytical Instrumentation	30 🔮	70	4	100		
E&IT-3.2: Embedded System	30 🦉	70	4	100		
E&IT-3.3(a): Digital Signal Processing	30	70	4	100		
E&IT-3.3(b): Analog Communications	30	70	4	100		
E&IT-3.3(c): Optical Communications	\$ 30	70	4	100		
E&IT-3.4(a): Industrial and Process Control Instrumentation	30	70	4	100		
E&IT-3.4(b): System On Chip Design	30	70	4	100		
E&IT-3.4(c) : Wireless Sensors & Networks	30	70	4	100		
MOOCS						
Lab 5: Embedded Systems Laboratory	30	70	4	100		
Lab 6: Advanced Instrumentation Laboratory	30	70	4	100		
IV SEMESTE	R	1		•		
E&IT-4.1: PC Based Instrumentation with Labview	30	70	4	100		
E&IT-4.2: VLSI Design	30	70	4	100		
Lab 7: Virtual Instrumentation Laboratory	30	70	4	100		
Project Work*	-	-	10	300		
TOTAL FOR CORE PAPERS		1	94			
GRAND TOTAL			94	2400		

DEPARTMENT OF ELECTRONICS & INSTRUMENTATION TECHNOLOGY M.Sc. ELECTRONICS & INSTRUMENTATION TECHNOLOGY

S. No.	Components of Study	Title of the Course	Title of the Paper	No. of Credits	Internal Assessment Marks	Semester end Examinations Marks	Total Marks
1.	Core-I	E&IT 1.1 (22)	Instrumentation Technology	4	30	70	100
2.	Core-II	E&IT 1.2 (22)	Advanced Analog and Digital Electronics	4	30	70	100
3.	Compulsory Foundation	E&IT 1.3 (22)	Sensors and Transducers	4	30	70	100
4.	Elective Foundation	E&IT 1.4 (a) (22) E&IT 1.4 (b) (22) E&IT 1.4 (c) (22)	1. Computer Programming in C 2: Semiconductor Devices & Applications 3. Network Analysis	4	30	70	100
5.	Practical-I	San Part	Analog and Digital Electronics	4	30	70	100
6.	Practical-II		Programming in "C" Language		30	70	100
]	TOTAL	an carrie	24	180	420	600

SEMESTER-I

Elective Foundation – Choose one paper.

Components	Weightage (%)
(Internals I& II)	30
End Semester Exams	70

Theory: Course Code, Course Title	<u>E & IT 1.1(22): INSTRUMENTATION</u> <u>TECHNOLOGY</u>	Credits: 4
Unit -1	INSTRUMENTS AND THEIR CLASSIFICATION:	Hours*
	Typical Applications of Instrument systems. Functional elements of Instrumentation and measuring systems. Standards and Calibrations. Introduction to errors and uncertainties in the measurement of performance parameters of instruments. Propagation of uncertainties in compound quantities. Order of instruments: Zero, First, Second and Nth order instruments. Null & Deflection, Manual & Automatic, Self generating & Power	12
	operated, Proximity& Non-proximity types, Analogue & Digital types.	
Unit -2	INSTRUMENTS STATIC PERFORMANCE	12
	CHARACTERISTICS: Static: Static performance parameters (characteristics) Accuracy, Precision, Resolution, Threshold, Sensitivity, Linearity, Hysteresis, Dead band, Backlash, Drift, Span. Impedance loading and Matching. Specifications of an instrument. Selection of an instrument.	
Unit -3	INSTRUMENTS DYNAMIC PERFORMANCE	12
	CHARACTERISTICS:	
	Dynamic: Introduction, Formulation of system equations, Dynamic Response of first order and second order instrument to periodic- Harmonic, Non-Harmonic, Transient and Random input signals, compensations.	
Unit -4	DATA PRESENTATION ELEMENTS: Digital display modules: LED, 7-seg displays, LCD, Dot matrix and graphical display modules.	12
	Recorders -Basic recoding systems. Strip chart recorder. Galvanometer and Potentiometer type recorder. X-Y recorder (direct and null type).Servo recorder. Thermal type recorder. Data logger.	
Unit -5	CALIBRATION OF MEASURING INSTRUMENTS:	12
	Calibration: Calibration of measuring instruments, Primary calibration, secondary calibration and field calibration. Calibration methods for different parameters (temperature, pressure, humidity, flowetc.). Automatic Calibration mechanisms. Applications: Periodic laboratory and field calibrations of sensors (Eg: Temperature and humidity sensors, Carbon dioxide sensors, Level sensors)	
	SSIGNMENTS:	
BOOKS FOR S		
	ion measurement & analysis-Nakra/Choudhary (Unit I, II, III) Mechanical Measurements & Instrumentation – A. K. Sawhney (Unit I, II, III).
	at and Instrumentation Principles - Morris, Alan S	
	Measurements – Beckwith, Marangoni, Lienhard	
5) Measuremen	tt of systems - Application and design - Earnest O. Doeblin	

- 6) Electronic Instrumentation and Measurement Technique Albert D Helfrick.
- 7) An Introduction to Error Analysis by John R. Taylor.

REFERENCE BOOKS:

- 1) Instrumentation devices & systems-Rangan, Mani, Sharma(Unit I,II,III)
- 2) Measurement of systems—Application and design—Earnest O. Doeblin
- 3) Electronic Instrumentation and Measurement Technique—William David Cooper & Albert D Helfrick.
- 4) Transducers Neubert.
- 5) Mechanical Measurements Beckwith, Marangoni, Lienhard.
- 6) Numerical Methods for Scientists and Engineers, S. R. Iyangar& M. K. Jain, PHI, 1999.
- 7) A Textbook of Computer Oriented Numerical Methods & Linear Programming, G. K. Ranganath, B. Suryanarayana, Chand Publications.

COURSE OUTCOMES:

	Course Outcome	Level
CO 1	▲ Leaning concept of instrumentation and measuring systems	Remember
	▲ To learn basic knowledge of order of instruments	
	Learn about proximity and non proximity types	
CO 2	▲ Students will learn the performance characteristics of instruments	Analyze
	▲ To learn Hysteresis	
	▲ Learn about specifications of instruments	
CO 3	▲ Leaning concept of formulation of systems	Understand
	▲ To learn basic knowledge of order of instruments	
	To learn about transient and random signals	
CO 4	▲ Studying the working of display modules	Skill
	▲ Learn about different types of recorders	
CO 5	▲ Leaning concept of calibration methods	Apply
	▲ Learning the various calibrations of sensors	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3
CO2	2	3	2	2	3
CO3	2	2	2	3	2
CO4	3	3	2	3	3
CO5	2	3	2	2	2

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

EVALUATION SCHEME:

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal I & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

Theory:	E & IT 1.2(22): ADVANCED ANALOG AND	
Course Code, Course Title	DIGITAL ELECTRONICS	Credits: 4
Unit -1	POWER SUPPLIES AND REGULATION:	Hours*
	Electronic Transport in semiconductor, PN junction, Diode equation and diode equivalent circuit. Breakdown in diodes, Zener diodes, Tunnel diode, Semiconductor diodes. Rectifier circuits, Peak detector, voltage doublers, Shunt regulator using zener diodes. Filters - RC, LC, II- sections. DC voltage regulation, Zener and Electronic regulation.LM-723 Regulator and three terminal regulators, Switch Mode Regulated Power Supplies (SMPS).Buck, Boost Buck Boost and Resonant Converters	12
Unit -2	ANALYSIS OF POWER AMPLIFIERS:	12
	Concept of an amplifier, Amplifier parameters, CE, RC coupled and transformer coupled amplifier - frequency response. Classification of amplifiers, class- A power amplifier, efficiency and crossover distortion, class- B push pull amplifier, single tuned and double tuned amplifier. Classification of feedback amplifiers, Effect of negative feedback on amplifier performance.	
Unit -3	OPERATIONAL AMPLIFIERS:	12
	Introduction to Operational Amplifiers. Characteristics of an Ideal and Practical operational amplifier. Circuit details of typical operational amplifier and equivalent circuits. Operational amplifier configurations, Current and Voltage followers, Summing, scaling and averaging amplifiers. Integrator, Differentiator, Schmitt trigger, sample and hold, Logarithmic and Anti- logarithmic amplifier, Differential amplifier, Instrumentation amplifier, I/V and V/I converters, Precision rectifiers, Peak detectors - analog multiplexers, Active Filters –LPF, HPF, BPF, Higher order and their comparison.	
Unit -4	OSCILLATORS AND TIMER	12
	Oscillator principles, oscillator types, frequency stability, Phase shift oscillator, Wein bridge oscillator, Quadrature oscillator, Multivibrators, IC-555 Timer - Internal block diagram of 555 IC timer, Astable, Monostable multivibrators, Timer applications. Phase Locked Loops- operating principles, monolithic phase locked loops, 565 applications.	
Unit -5	DIGITAL ELECTRONICS	12
	Number system: Binary, Decimal and Hexa-decimal number' system. Conversions to each other. Binary coded decimal (BCD - 8421) and gray code, conversion between Binary and gray code. The ASCII code (American Standard Code for information. interchange). Logic Gates TTL and CMOS logic & characteristics - Arithmetic and Logic circuits, Sequential Logic, Flip-Flops, Registers, Counters. 74193 counter - Interfacing devices- buffers, decoders, BCD-to-7 segment decoder/driver, encoders, latches, Multiplexers, De-multiplexers, Magnitude comparator and tri-state buffers. Data converters ADC and DAC.	
	ASSIGNMENTS:	
BOOKS FOR S		
	Devices and Circuit Theory Nishalisky and Robert Boylestad. Amplifiers-Ramakant Gayakwad.	
-	ciples – Malvino& Leach (Unit IV)	
-	rated Circuits-D.Roy Choudhury Shail B.Jain	

REFERENCE BOOKS:

- 1) Operational Amplifiers and Characteristic- Robert G Irvine
- 2) An introduction to operational Amplifiers and their Applications –S.V.Subrahmanyam, Y.Narasimha Murthy Macmillan.

COURSE OUTCOMES:

	Course Outcome	Level
CO 1	▲ Leaning concept of semiconductors characteristics	Remember
	▲ To learn basic knowledge of voltage regulators	
	▲ Learn about power supplies and regulation methods	
CO 2	▲ Leaning concept of amplifiers	Analyze
	▲ To learn basic knowledge of frequency response of amplifiers	
	▲ Learn about effect of feed-back on amplifier performance	
CO 3	▲ Leaning concept of ideal and practical characteristics of amplifiers	Understand
	▲ To learn basic knowledge of op amp applications	
	▲ Learn about working of special purpose amplifiers	
CO 4	▲ Leans about the basic principle of oscillators	Skill
	▲ Gains the basic knowledge of PLL	
	▲ Learns both theory and practical applications of IC555	
CO 5	▲ Gains the basic knowledge of digital electronics	Apply
	▲ Will learn about logic families	
	▲ Learn about converters and their applications	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1 //	PO2	PO3	PO4	PO5
CO1	2	3	2	2	2
CO2	3	3 🧠	2	0 3	3
CO3	2	2	2	3	2
CO4	2	2	3	3	3
CO5	3		3	2	2

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal 1 & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question) $14 \times 5 = 70$					
TOTAL	14	14	14	14	14

Theory: Course Cod Course Titl		Credits: 4			
Unit -1	FUNDEMENTAL OF SENSORS AND TRANSDUCERS:	Hours*			
	Introduction and Classifications of Sensors and Transducers Physical Principles of Sensing - Electric Charges, Fields, and Potentials - Capacitance - Magnetism - Induction - Resistance - Piezoelectric Effect - Pyroelectric Effect - Hall Effect –Seebeck and Peltier Effects -Sound Waves - Temperature and Thermal Properties of Materials -Heat Transfer –Light.				
Unit -2	DISPLACEMENT, PRESSURE AND FLOW SENSORS: Position, Displacement, and Level, Force, Strain, and Tactile Sensors, Pressure Sensors, Flow Sensors.	12			
Unit -3	Unit -3TEMPERATURE, CHEMICAL AND FILM SENSORS: Temperature Sensors, Chemical Sensors, Thin and Thick Film sensors And Their Processing Methods, Light Detectors.				
Unit -4	Unit -4 ADVANCED SENSORS: MEMS: Introduction – Sensor Materials - Surface processing techniques - R&D on MEMS - Current and Future Technology - The NANO/MEMS Program.				
Unit -5	Unit -5 APPLICATIONS OF ADVANCED SENSORS: MEMS Applications: Energy Management, Medical Industry. Automotive Applications of Microelectromechanical Systems (MEMS), Military Applications, Communication Systems.				
TASKS AND	ASSIGNMENTS:				
Jacob © 2	R STUDY: x of Modern Sensors - Physics, Designs and Applications (3rd Edition) Se 2004 Springer – Verlag. (Units – I,II,III) Iandbook – SabrieSoloman, McGraw-Hill (Second ed.,)(Unit-IV)	earch Within,			
	E BOOKS: tation measurement analysis - Nakra and Choudary (Unit I) Control Electronics – Michel Jacob				
 Measurer Hand Boo 	nent of systems—Application and design — Earnest O Doeblin ok of Biomedical Instrumentation –R S Khandpur (TMH)				
COURSE C	UTCOMES:				
	Course Outcome	Level			
★ 1	Leaning concept of electric charge and potentials To learn basic knowledge of sensors electromagnetic field effects Learn about properties of materials	Remember			
CO 2 🔺	Learns concept of force and strain measuring using sensors To learn the working principle of temperature sensors	Analyze			
	Will learn the fabrication process of thin and thick film sensors To learn about the working principle of chemical sensors	Understand			

Skill

Apply

▲ Learn about working of light detectors

▲ Learn the concept of Nano and MEMS

▲ Leaning concept of MEMS

CO 4

CO 5

▲ Leaning concept of sensor materials and processing techniques

★ To learn about the applications of sensors in R&D

★ To learn about the advanced applications of MEMS

	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	2	2	3	2	2
CO3	3	2	3	3	3
CO4	3	3	2	2	2
CO5	3	2	3	3	2

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
TOTAL	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

0 42 0 1	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	P.	1	1
Seminar	L	T	13	1	1
Test (Internal 1 & Internal II)	802	2	2	2	2
Attendance	2	m 12	2	2	2
TOTAL	63 5	to 58 35	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question) $14 \times 5 = 70$					
TOTAL	14	14	14	14	14

Theory:	ELECTIVE FOUNDATION:	
Course Code,	E & IT 1.4. A (22): COMPUTER PROGRAMMING	Credits: 4
Course Title	<u>IN C</u>	
Unit -1	INTRODUCTION TO COMPUTERS AND BASICS OF C LANGUAGE	Hours* 12
	Basic principle and working of computers. Need for programming languages. Machine and user oriented languages. Assemblers and compilers. Elements of computer programming. Algorithm, Flow chart, Syntax and Semantic errors. Introduction to operating systems - Windows and Linux.	
	Overview of C: Basic Structure of C Programs, Executing a 'C' Program, Constants, Variables, and Data Types : Constants, Variables, Data Types, Declaration of Variables, Declaration of Storage Class, Assigning Values to Variables.	
Unit -2	DATA I/O, EXPRESSIONS, BRANCHING	12
	Input and Output Operations: Reading a Character, Writing a Character, Formatted Input, Formatted Output. Operators and Expressions : Arithmetic Operators, Relational Operators, Logical Operators, Assignment Operators, Increment and Decrement Operators, Conditional Operator, Bitwise Operators, Special Operators, Arithmetic Expressions, Evaluation of Expressions, Precedence of Arithmetic Operators, Some Computational Problems, Type Conversions in Expressions, Operator Precedence and Associatively, Mathematical Functions. Decision Making and Branching: Decision Making with if Statement, Simple if Statement, The ifelse Statement, Nesting of ifelse Statements, The Else if Ladder, The Switch Statement, The ? : Operator, The Goto Statement. Decision Making and Looping; The While Statement, The do Statement, The for Statement, Jumps in Loops.	
Unit -3	ARRYAS, FUNCTIONS AND STRUCTURES	12
	Arrays: One-dimensional Arrays, Declaration of One-dimensional Arrays, Initialization of One-dimensional Arrays, Two-dimensional Arrays, Initializing Two-dimensional Arrays, Multi-dimensional Arrays: Functions: Elements of User-defined Functions, Definition of Functions, Return Values and their Types, Function Calls, Function Declaration, Category of Functions, Passing Arrays to Functions, The Scope, Visibility and Lifetime of Variables. Structures and Unions: Defining a Structure, Declaring Structure Variables, Accessing Structure Members, Structure Initialization, Copying and Comparing Structure Variables.	
Unit -4	POINTERS, AND APPLICATIONS OF 'C'	12
	Pointers: Understanding , Accessing the Address of a Variable, Declaring Pointer Variables, Initialization of Pointer Variables, Accessing a Variable through its Pointer, Chain of Pointers, Pointer Expressions, Pointer Increments and Scale Factor, Pointers and Arrays, Pointers and Character Strings, Array of Pointers, Pointers as Function Arguments, Functions Returning Pointers, Pointers to Functions, Pointers and Structures.	
Unit -5	FILE MANAGEMENT USING 'C' LANGUAGE:	12
	File Management in C: Defining and Opening a File, Closing a File, Input/ Output Operations on Files, Error Handling during I/O Operations, Random Access to Files. Accessing hardware of computer, I/O applications through printer port .C programming for the solutions of problems using numerical methods.	

TASKS AND ASSIGNMENTS: BOOKS FOR STUDY:

- 1) Programming in ANSI 'C' E. Balagurusamy (Unit I, II, III & IV)
- 2) Let us 'C' YeshwanthKanetkar (Unit I, II, III & IV)
- 3) Numerical Methods in C J.G.Kori (Laxmi Publication Pvt.Ltd., New Delhi) (for Laboratory purpose)

REFERENCE BOOKS:

- 1) Numerical Methods for Scientists and Engineers, S. R. Iyangar & M. K. Jain, PHI, 1999.
- 2) A Textbook of Computer Oriented Numerical Methods & Linear Programing, G. K.
- 3) Ranganath, B. Suryanarayana, Chand Publications. Programming in C, V. Rajarama

COURSE OUTCOMES:

	Course Outcome	Level
CO 1	▲ Leaning concept of generations and developments of computers	Remember
	▲ To learn basic knowledge of data types	
	▲ Learn about assigning variables	
CO 2	▲ Leaning concept of various operators	Analyze
	▲ To learn basic knowledge of loops	
	▲ Learn about branching	
CO 3	▲ Leaning concept of arrays and corresponding programms	Understand
	▲ To learn basic knowledge of functions	
	▲ Learn about usage of structures in c	
CO 4	▲ Leaning concept of variables	Skill
	▲ To learn basic knowledge of pointers and arrays	
	▲ Learn about pointers and structures	
CO 5	▲ Leaning concept of file handling in c	Apply
	▲ To learn basic knowledge of i/o operations	
	▲ Learn about i/o applications	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	2	2 5 55-	1 50 a 2	2	2
CO2	3	3	3	3	2
CO3	2	3	2	2	3
CO4	3	3	2	2	3
CO5	2	2	3	3	2

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal 1 & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question) $14 \times 5 = 70$					
TOTAL	14	14	14	14	14

MAPPING COURSE OUTCOME WITH EXTERNAL ASSESSMENT:

	ELECTIVE FOUNDATION:	
Theory: Course Code,		Credits: 4
Course Title	<u>E & IT 1.4 B (22): SEMICONDUCTOR DEVICES &</u>	
	APPLICATIONS	
Unit -1	Introduction to Semiconductor Physics:	Hours*
	Energy Band and Charge Carriers: Energy bands in semiconductors, Types	12
	of semiconductors, Charge carriers, Intrinsic and extrinsic materials.	
	Carrier concentration: Fermi Level, Electron and hole concentration	
	equilibrium, Temperature dependence of carrier concentration,	
TT :4 0	Compensation and charge neutrality.	10
Unit -2	Properties of Semiconductors and Mechanism:	12
	Conductivity and mobility, Effect of temperature, Doping and high electric field, Hall Effect, Diffusion and drift of excess carriers, Recombination	
	mechanism, Trapping, Shockley–Read–Hall theory, Continuity Equation,	
	Diffusion Length.	
Unit -3	P-N Junction Diode:	12
	Diffusion potential, Depletion region. Junction capacitance for an abrupt	
	junction. Current voltage characteristics-Schottky equation. Photo-voltaic	
	effect in Pnjunction.Zener Diode: Junction Break down, tunneling and	
	avalanche multiplication I-V characteristics, maximum rating of a Zener	
	diode, application of Zener diode in voltage regulation.	
Unit -4	Bipolar Junction Transistor (BJT):	12
	Basic current-voltage characteristics, current gain, Device Modelling:	
	Ebers-Mol model. Junction Field Effect Transistor (JFET): Basic current-	
	voltage characteristics for uniform charge distribution, Diffusion of the	
	linear saturation and breakdown regions in the I-V characteristics Equivalent circuit of JFET and frequency limitations.	
Unit -5	Metal semiconductor junction and MOSFET :	12
Cint 5	Metal semiconductor junction, Shottky effect; MOSFET: Different types	12
	of MOSFET: depletion and enhancement, n-channel and p-channel; Basic	
	device characteristics, comparison of JFET and MOSFET.	
TASKS AND A	SSIGNMENTS: 6	
BOOKS & RE	FERENCE BOOKS:	
1) Streetman, H	B. and Banerjee, S., Solid State Electronics, Prentice Hall India, (2006).	
	Physics of Semiconductor Devices, John Wiley, (1981).	
	Electron Devices-B. G. Streetman.	
1) Dharaing of a		

- 4) Physics of semiconductor Devices J. G. Bitechnan.
- 5) Semiconductor Physics and Device Neamen, McGraw Hill 3/e
- 6) Electronic Devices & Circuits J. Millman and C. C. Halkias.

COURSE OUTCOMES:

	Course Outcome	Level
CO 1	▲ Leaning concept of electrons flow in semiconductor	Remember
	▲ To learn basic knowledge of temperature effect in semiconductors.	
CO 2	▲ Leaning concept of diffusion and drift	Analyze
	▲ To learn basic knowledge of order of instruments	
	▲ Learn about properties of semiconductors.	
CO 3	▲ Leaning concept of semiconductor diode	Understand
	▲ To learn basic knowledge of barrier breakdown in semiconductors	
	▲ Learn about applications of semiconductors.	

CO 4	★	Leaning concept of FET	Skill
	★	To learn basic knowledge of V-I characteristics of JFET.	
CO 5	★	Leaning concept of MOSFET	Apply
	★	To learn basic knowledge of various types of MOSFET.	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	2	2	3	3	2
CO2	3	3	2	2	3
CO3	3	2	3	2	3
CO4	2	2	3	3	2
CO5	3	3	3	2	2

EVALUATION SCHEME:

			1 million			
	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	_14	14	14	14	70
Total	20 5	20	20	20	20	100
	11/2/	//		3		

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

C S	C01	CO2	CO3	CO4	CO5
Assignments	$1\frac{2}{5}$	1	1	1	1
Seminar	15/	1	1	1	1
Test (Internal 1 & Internal II)	2//	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question) 14 x 5 = 70 Marks					
TOTAL	14	14	14	14	14

Theory: Course Code, Course Title	ELECTIVE FOUNDATION: <u>E & IT 1.4 C (22): NETWORK ANALYSIS</u>	Credits: 4
Unit -1	Introduction to Electrical Circuits:	Hours*
	Network elements classification, Electric charge and current, Electric energy	12
	and potential, Resistance parameter – series and parallel combination,	
	Inductance parameter - series and parallel combination, Capacitance parameter	
	- series and parallel combination. Energy sources: Ideal, Non-ideal,	
	Independent and dependent sources, Source transformation, Kirchoff's laws,	
	Mesh analysis and Nodal analysis problem solving with resistances only	
Unit -2	including dependent sources also.	
Unit -2	A.C Fundamentals and Network Topology: Definitions of terms associated with periodic functions: Time period, Angular	
	velocity and frequency, RMS value, Average value, Form factor and peak	
	factor- problem solving, Phase angle, Phasor representation, Addition and	
	subtraction of phasors, mathematical representation of sinusoidal quantities,	12
	explanation with relevant theory, problem solving. Principles of Duality with	
	examples. Network Topology: Definitions of branch, node, tree, planar, non-	
TT 1 . 0	planar graph, incidence matrix, basic tie set schedule, basic cut set schedule.	
Unit -3	Steady State Analysis of A.C Circuits:	
	Response to sinusoidal excitation - pure resistance, pure inductance, pure capacitance, impedance concept, phase angle, series R-L, R-C, R-L-C circuits	
	problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C	
	problem solving using mesh and nodal analysis, Star-Delta conversion, problem	12
	solving.	
Unit -4	Network Theorems:	
	Thevinin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution,	
	Superposition, Max Power Transfer, Tellegens- problem solving using	
TI	dependent sources also.	12
Unit -5	Two-Port Networks: Relationship of two port networks, Z-parameters, Y- parameters, Transmission	
	line parameters, h-parameters, Inverse h- parameters, Inverse Transmission line	
	parameters, Relationship between parameter sets, Parallel connection of two	
	port networks, Cascading of two port networks, series connection of two port	12
	networks, problem solving including dependent sources also.	
	SSIGNMENTS:	
TEXT BOOKS		
· ·	alysis – ME Van Valkenburg, Prentice Hall of India, 3rd Edition, 2000.	
	alysis by K.Satya Prasad and S Sivanagaraju, Cengage Learning	
3) Electric Circ	cuit Analysis by Hayt and Kimmarle, TMH	
REFERENCE	BOOKS:	

- Network lines and Fields by John. D. Ryder 2nd edition, Asia publishing house.
 Basic Circuit Analysis by DR Cunninghan, Jaico Publishers.
- 3) Network Analysis and Filter Design by Chadha, Umesh Publications.

	Course Outcome	Level
CO 1	▲ Leaning concept of network elements	Remember
	★ To learn basic knowledge of kirchoffs laws.	
CO 2	▲ Leaning concept of network topology	Analyze
	▲ To learn basic knowledge of phase representation.	
CO 3	▲ Leaning concept of R_L_C circuits	Understand
	★ To learn basic knowledge of R-L-c problem solving methods.	
CO 4	▲ Leaning concept of network theorems.	Skill
CO 5	▲ Leaning concept of Network parameters	Apply
	★ To learn basic knowledge of connections of network ports.	

COURSE OUTCOMES:

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	3	2	3
CO2	2	2	3	3	3
CO3	3	3	3	2	2
CO4	2	3	2	3	20
CO5	2	2	3	2	3

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
TOTAL	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

Stable Stable					
	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal 1 & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category		CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question) $14x 5 = 70$ Marks					
TOTAL		14	14	14	14

PRACTICAL-I: ADVANCED ANALOG AND DIGITAL ELECTRONICS

	Credits: 4
LIST OF EXPERIMENTS:	HOURS
1) IC-723 Voltage Regulator	3
2) Current to Voltage converter	3
3) Instrumentation Amplifier	3
4) High pass first older & second order filter	3
5) Low pass first older & second order filter	3
6) The IC-555 as Astable Multivibrator	3
7) Counters IC 74193	3
8) 7447 BCD to Seven Segment Decoder Driver	3
9) Wein Bridge Oscillator	3
10) Digital to Analog Converter DAC 0800	3
11) A/D Converter 0800	3
12) F/V converter using LM-331	
TASKS AND ASSIGNMENTS:	
1) Virtually executing the experiments	
2) Observation submission	
3) Viva-Voce	
4) Practical Examination	

COURSE OUTCOMES:

	Course Outcome	Level
CO 1	▲ To learn basic knowledge of voltage regulators	Remember
	▲ Learn about power supplies and regulation methods	
CO 2	▲ Leaning concept of amplifiers	Analyze
	▲ To learn basic knowledge of frequency response of amplifiers	
CO 3	▲ Leaning concept of ideal and practical characteristics of amplifiers	Understand
	▲ To learn basic knowledge of op amp applications	
CO 4	▲ Leans about the basic principle of oscillators	Skill
	▲ Learns both theory and practical applications of IC555	
CO 5	▲ Gains the basic knowledge of digital electronics	Apply
	▲ Learn about converters and their applications	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	3	3
CO2	3	3	2	2	2
CO3	2	2	3	3	2
CO4	3	3	3	2	2
CO5	2	2	2	1	2

PRACTICAL-II: PROGRAMMING "C" LANGUAGE

	Credits: 4
LIST OF EXPERIMENTS:	HOURS
1) Write a "C" program for addition of two matrices?	3
2) Write a "C" program to find transpose of matrices?	3
3) Write a "C" program to find the trace of the matrices?	3
4) Write a "C" program for electricity Bill taking Different readings using Nested IF	3
Else statements?	3
5) Write a "C" program to find the numbers	3
i) Prime Number or Not	
ii) Perfect Number or Not	3
iii) Deficient or Not	
6) Write a "C" program to find numbers	3
i) Armstrong or NOT	
ii) Strong or NOT	
7) Write a "C" program to find the statistical parameters from an array of numbers	3
i) Mean	
ii) Mode	
iii) Variance	
iv) Standard Deviation	
TASKS AND ASSIGNMENTS:	
1) Virtually executing the experiments	
2) Observation submission	
3) Viva-Voce	
4) Practical Examination	

COURSE OUTCOMES:

	Course Outcome	Level	
CO 1	▲ To learn basic knowledge of data types	Remember	
	▲ Learn about assigning variables		
CO 2	▲ Leaning concept of various operators	Analyze	
	▲ To learn basic knowledge of loops		
CO 3	▲ Leaning concept of arrays and corresponding programms	Understand	
	▲ To learn basic knowledge of functions		
CO 4	▲ Leaning concept of variables	Skill	
	▲ To learn basic knowledge of pointers and arrays		
CO 5	▲ Leaning concept of file handling in c	Apply	
	▲ To learn basic knowledge of i/o operations		

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	3	3	3	3	3
CO2	2	2	2	2	2
CO3	3	3	2	2	3
CO4	2	3	2	3	2
CO5	3	2	3	3	2

M.Sc. ELECTRONICS & INSTRUMENTATION TECHNOLOGY SEMESTER – II

S. No.	Components of Study	Title of the Course	Title of the Paper	No. of Credits	Internal Assessment Marks	Semester end Examinatio ns Marks	Total Marks
1.	Core-I	E&IT 2.1(22)	Electrical and Electronic instrumentation	4	30	70	100
2.	Core-II	E&IT 2.2(22)	Control Systems and Automation	4	30	70	100
3.	Compulsory Foundation	E&IT 2.3 (22)	Microprocessors and Microcontrollers	4	30	70	100
4.	Elective Foundation	E&IT 2.4 (a) (22) E&IT 2,4	Bio-Medical Instrumentation Computer Architecture	4	30	70	100
		(b)(22) E&IT 2.4 (c) (22)	& Organization Artificial Neural Networks and Fuzzy Logics		ARYA NAGA		
5.	Practical-II	3	Transducer & Instrumentation Laboratory	4	30	70	100
6.	Practical-IV		Microcontrollers Laboratory	4	30	70	100
		TOTAL		24	180	420	600

Elective Foundation – Choose one paper 5 200 500

Components	Weightage (%)
(Internals I& II)	30
End Semester Exams	70

Theory:	E & IT 2.1 (22): ELECTRICAL AND	
Course Code, Course Title	ELECTRONIC INSTRUMENTATION	Credits: 4
Unit -1	ANALOG INSTRUMENTS: Principle, Operation and constructional details of PMMC moving coil galvanometer, Moving Iron galvanometer, DC Ammeters, DC voltmeters. Ohmmeters: Series type, shunt type meters. Extension of ranges of meters. AC meters – Electrodynamometers, Rectifier type and Thermal type Errors and their compensation. Design and constructional details of multimeters.	Hours* 12
Unit -2	POWER & ENERGY METERS AND INSTRUMENT TRANSFORMERS: Electrodynamometer type (power) watt meters-methods of connection, errors and their compensation. Principle, Operation, Constructional details of Hall-effect and thermal type watt meters. Principle and construction of electro-dynamometers, watthour meters, power factor meter, Instrument transformers – Phaser diagram, expression for ratio and phase angle, applications of CTs and PTs.	12
Unit -3	MEASURING INSTRUMENTS: Introduction, Output power meters, Field strength meters, Stroboscope, Phase Meter, Vector Impedance Meter (Direct Reading) Q-Meter, LCR Bridge, RX meters, Automatic Bridges, Transistor Tester, Megger, Analog pH meter.	12
Unit -4	PRECISION ANALOG MEASURING INSTRUMENTS: Electronic voltmeter (Transistor and FET versions).DC and AC Milli/Micro voltmeters, Nano-ammeter. Analog frequency meter. Analog phase meter. Cathode Ray Oscilloscope- Signal beam, Dual trace, Dual beam.	12
Unit -5	DIGITAL MEASURING INSTRUMENTS & WAVEFORM GENERATORS: Digital voltmeter, Digital multimeter, Introduction to ICL 7106/7107 DVM I.C, Digital frequency meter, Digital phase meter, Storage Oscilloscope, Digital Storage Oscilloscope and Sampling Oscilloscopes. Sine/Square Wave Generator.R.F. Signal Generator.Standard Signal Generator. Function Generator.	12
	SSIGNMENTS:	
BOOKS FOR S 1) Electronic In	strumentation and Measuring Techniques- Cooper (Unit I, II)	
,	Electrical and Electronic Measurements and Instrumentation-A K Sawl	nney (Unit I

3) Electronic Instrumentation - H S Kalsi (Unit III,IV)

REFERENCE BOOKS:

- 1) Electronic Measurements and Instrumentation Oliver & Cage
- 2) Instrumentation Devices and Systems- Rangan, Mani and Sharma
- 3) Experiments in Electronics Subramanyam
- 4) Electrical Measurements and Measuring Instruments- Goldings & Widdis

	Course Outcome	Level
CO 1	▲ Leaning concept of moving coil instrument working	Remember
	★ To learn basic knowledge of ac and dc meters	
	▲ Learn about multimeters	
CO 2	▲ Leaning concept of meters methods of connection	Analyze
	★ To learn basic knowledge of Hall Effect	
	▲ Learn about CT's and PT's usage in Electrical	
CO 3	★ Students should be able to understand different meters working principle	Understand
	★ To understand working principle of bridges	
CO 4	▲ Leaning concept of meters to measure both ac and dc values	Skill
	★ To learn basic knowledge of CRO	
	▲ Learn about applications of oscillators	
CO 5	▲ Understands the universal counter working principle	Apply
	★ To know how to generate different wave forms using wave form	
	generators.	
	▲ Learn about signal generators	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	2	2
CO2	3	3 3	2 %	3	3
CO3	2	2	2 5	3	2
CO4	2	2	3	3	3
CO5	3	2	3	5 2	2

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6 6	6	6	6	6	30
External	14	14 0/	14 =	214	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

		CO1	CO2	CO3	CO4	CO5
Assignments	Not Notes 380 300	1	1	1	1	1
Seminar	0.000	1	1	1	1	1
Test (Internal 1 & Internal II)		2	2	2	2	2
Attendance		2	2	2	2	2
TOTAL		6	6	6	6	6

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal 1 & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question) $14 \times 5 = 70$					
TOTAL	14	14	14	14	14

Theory:	E & IT 2.2. (22): CONTROL SYSTEMS AND	
Course Code, Course Title	AUTOMATION	Credits: 4
Unit -1	INTRODUCTION TO CONTROL SYSTEMS	Hours*
	Basic elements in control systems, Open-loop, closed-loop control	12
	systems. Types of control systems linear and non-linear, Time-invariant and Time-varying, continuous and sampled data and digital control,	
	Effects of Feedback on-Overall Gain, Stability, Sensitivity, Bandwidth	
	and Noise. Transfer function-AC and DC servomotors. Block Diagram	
	Algebra, Block diagram reduction techniques – Signal flow graphs.	
Unit -2	TIME RESPONSE :	12
	Time response: - Time domain specifications, Standard Test Signals,	
	Time Response of First and second order system. Design Specifications	
	of Second Order System. Performance Indices. Static error coefficients, Generalized error series – Steady state errors, Effects of P, PI, PID	
	modes of feedback control –Time response analysis.	
Unit -3	STABILITY CRITERION:	12
	Concept of Stability, Necessary condition for Stability. Hurwitz stability	
	Criterion. Routh stability criterion. Relative stability Analysis.	
	Roots-Locus concepts. Construction of root-loci. Rules for constructing	
	Root-loci. Root-locus Analysis of control System. Determination of roots from root locus, root contours	
Unit -4	FREQUENCY RESPONSE ANALYSIS:	12
	Introduction, correlation between time and frequency responses. Polar	
	plots, Bode plots. All pass and minimum phase systems, Experimental	
	determination of transfer functions. Bode plots.	
	Introduction to mathematical preliminaries. Nyquist stability Criterion.	
	Assessment of relative stability. Stability Analysis Gain Margin (GM)	
	and Phase Margin (PM) Closed-loop Frequency response. Constant M and N circles. Nicholas Chart.	
Unit -5	STATE VARIABLE ANALYSIS AND DESIGN:	12
	Concept of state, State variables and state model. State models for Linear	
	continuous and Time-varying system. Diagonalization. State transition	
	matrix. Solutions of state equations. Concepts of Controllability and	
	observability. State variables and linear discrete time system.	
	ASSIGNMENTS:	
BOOKS FOR		
	stems Engineering – Nagrath. I. J. &Gopal. M (Unit I, II, & III) Control Systems- Benjamin C. Kuo (Unit II & III)	
	ntrol System Engineering – K. Ogata (Unit IV)	
REFERENCE		
	Control System Analysis & Design – D Azz, J.J and Houpis C.H	
	stem Design – Savant C. J.	
	tomatic Control Theory – Murphy G.J.	

	Course Outcome	Level
CO 1	▲ To study the control system elements	Remember
	▲ To learn basic knowledge open and closed loop systems	
	▲ Learn about advanced techniques of control system	
CO 2	▲ Students will learn the time response of control systems	Analyze
	▲ Learning the order of system and types of PID controllers	
CO 3	▲ To study the concept of stability	Understand
	▲ Learn about analysis of Root locus	
CO 4	▲ To study the frequency response of the system	Skill
	▲ To learn basic knowledge of Bode plots	
	▲ Learn about control system mathematical preliminaries	
CO 5	▲ Learn about state and state transition	Apply
	▲ To learn basic knowledge of controllability and observability	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3
CO2	2	3	2	2	3
CO3	2	2	2	3	2
CO4	3	3	2	3	3
CO5	2	0 3	2	2	2

EVALUATION SCHEME:

		CO2	CO3	CO4	CO5	Total
	CO1			a	-	1/2
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100
	•			A CAN	- Co.54	19-19-19-19

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	C01	CO2	CO3	CO4	CO5
Assignments	1	1	1.5	1	1
Seminar	1	NU 00)091 ⁰⁰⁰	1	1
Test (Internal I & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

Theory:	E & IT 2.3. (22): MICRO PROCESSORS AND	<i>a</i> n
Course Code, Course Title	MICRO CONTROLLERS	Credits: 4
Unit -1	MCS-51 MICROCONTROLLER SYSTEMS:	Hours*
	Introduction to Microcontroller Systems - Block diagram of 8051 Mc	12
	- functional units - memory organization - ports, interrupts, timers -	
	Addressing modes, instruction set - I/O Ports, Interrupts,	
	Timer/Counter, Serial Communication.	
Unit -2	PIC MICROCONTROLLER PIC 16C6X/7X ARCHITECTURE:	12
	PIC Microcontrollers- Overview and features, PIC 16C6X/7X, PIC	
	reset actions, Oscillator connection, Memory organization, PIC	
	16C6X/7X instructions, Addressing modes, I/O ports, Interrupts, PIC	
	16C61/71 timer and A/D converter.	
Unit -3	PIC MICROCONTROLLER 16F8XX ARCHITECTURE:	12
	PIC 16F8XX Flash Microcontrollers- Pin diagram of 16F8XX,	
	STATUS Register, OPTION_REG Register, Power Control Register,	
	PIC 16F8XX program memory, data memory, Data EEPROM and	
	Flash Program EEPROM, Interrupts in 16F877, I/O ports and Timers.	
Unit -4	INTERFACING WITH 8051 AND PIC MICROCONTROLLERS :	12
	Interfacing of LED, 7-segment Display, Multiplexed7-segment	
	Display, LCD, Keyboard, Stepper motor, ADC and DAC and their	
	applications. Measurement of Frequency and Pulse width -	
	Generation of PWM waveforms.	
Unit -5	ADVANCED APPLICATIONS USING PIC MICROCONTROLLER:	12
	Application on Graphical LCD - SD Card - 1 ² C, USB Bus - CAN	
	Bus-SPI Interface- Ethernet Interface - ZigBee Interface- RFID &	
TASKS AND AS	Bluetooth, GSM&GPRS.	

TASKS AND ASSIGNMENTS:

BOOKS FOR STUDY:

- 1) The 8051 microcontroller and embedded systems Muhammad Ali Mazidi& J G Mazidi (Unit I&III).
- 2) PIC Microcontrollers by Ajay V Deshmukh
- 3) Advanced PIC microcontroller projects in C: from USB to RTOS with the PIC18F series/Dogan Ibrahim (Newnes publications)
- 4) Design with PIC Microcontrollers John B. Peatman (Unit III and IV)

REFERENCE BOOKS:

- 1) Embedded microcontroller's data book- Intel Corporation.
- 2) Embedded microcontroller's application- Intel Corporation.
- 3) PICs in practice F P Volpe & S Volpe, Elector Electronics
- 4) Embedded Control Handbook MICROCHIP (Vol. 1 & 2)
- 5) The 8051 Microcontroller: Architecture, Programming and Applications -Kenneth J Ayala.

	Course Outcome	Level
CO 1	▲ Leaning concept of functional units of microcontroller	Remember
	▲ Learn about timer and counter applications	
CO 2	▲ Leaning concept of PIC	Analyze
	▲ To learn basic knowledge of memory organization	
	▲ Learn about A/D converters	

CO 3	▲	To learn basic knowledge of pin configurations of PIC	Understand
	★	Learn about types of memory	
CO 4	★	Leaning concept of interfacing devises	Skill
	★	To learn basic knowledge of ADC and DAC	
	▲	Learn about wave form generation	
CO 5		Learning about SD card	Apply
	★	Leaning concept CAN bus	
	★	Understand about interfacing	

	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	2	2
CO2	3	3	2	3	3
CO3	2	2	2	3	2
CO4	2	2	3	3	3
CO5	3	2	3	2	2

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

// Junior

8	CO1	CO2	CO3	CO4	CO5
Assignments	1 \$	1	1	1	1
Seminar	7/12	/ 1/	1	1	1
Test (Internal 1 & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question) $14 \times 5 = 70$					
TOTAL	14	14	14	14	14

Theory:	<u>E & IT 2.4. (A) (22): BIO-MEDICAL</u>	
Course Code, Course Title	INSTRUMENTATION	Credits: 4
Unit -1	BIOMEDICAL ELECTRODES AND TRANSDUCERS:	Hours*
	Bio-electrical signal, recording electrode for ECG, EEG, EMG.	12
	Monopolar, Bipolar and nonpolar electrode. Biochemical sensors, pulse	
	and respiration sensors. Bio electric amplifiers. Bio potential amplifiers.	
Unit -2	CARDIO-VASCULAR SYSTEM & RELATED	12
	INSTRUMENTATION: Physiology of heart and cardiovascular	
	systems, electrocardiography, pace makers, defibrillators, measurement	
	of blood pressure, temperature and pulse recorders.	
Unit -3	RESPIRATORY SYSTEM AND RELATED INSTRUMENTATION:	12
	Physiology of respiratory system – mechanism of breath, pulmonary	
	function analysers, respiratory gas analysers, artificial heart, lung mechanisms.	
Unit -4	NERVOUS & SENSOR SYSTEMS, RELATED INSTRUMENTATION:	12
Unit -4	Physiology of nervous system, neuronal communication, organization of	12
	brain, electro-encephalograph and reflex of the brain, experimental study	
	of the behavior and physiological measurement. Instruments for testing	
	of motor responses and sensory measurements.	
Unit -5	MODERN IMAGING SYSTEMS:	12
	X-ray, computer aided tomography and applications, NMR imaging	
	techniques and Applications. Medical Ultra sound, Pulse echo	
	transmitter and receiver, A- scan, Echo-Opthamoscope, Echo-	
	Cardiogram and B-scan, Biological effects of Ultra sound.	
	Heomodialysismachine. Applications of Ar, Ruby AND Diode lasers in	
	biomedical field	
TASKS AND A	SSIGNMENTS:	
BOOKS FOR S	STUDY:	
1) Hand book (of Biomedical Instrumentation -R S Khandpur (Unit I, II).	
	Instrumentation and Measurements- Leslie, Cromwel, Fred Wailbell, Erich,	Pfeiffer
(Unit I, II, I	II & IV)	
	Instrumentation – Arumugam (Unit I, II)	
4) Biomedical	Equipment and Technology – Joseph Brown (Unit I, III, IV)	
REFERENCE	BOOKS:	
1) Biomedical	Instrumentation and Measurements, allied - Harry E Thomas.	
	of Biomedical Engineering –Jacob Kline Transducers for Biomedical Measure	urements –
	Electronics- Joseph Dubovy	
	Instruments, Theory and Design-Welkowitz and Dentsch	
,u		

		Course Outcome	Level
CO 1	*	Leaning concept of recording electrodes	Remember
	★	To learn basic knowledge of biochemical sensors	
CO 2		Leaning concept of electrocardiography	Analyze
	★	To learn basic knowledge of blood pressure	
	★	Learn about pulse recorders	
CO 3		Leaning concept of pulmonary function analyzers	Understand
	★	To learn basic knowledge of heart and lung mechanisms	

CO 4	★	To understand the concept of nervous system	Skill
	★	To learn basic knowledge of electro encephalograph	
	★	Learn about sensory measurements	
CO 5	★	Leaning concept of X-ray and NMR imaging techniques	Apply
	★	To learn basic knowledge of A-Scan, Echo, B-Scan	
	★	Learn about lasers applications in biomedical	

	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	2	2
CO2	3	3	2	3	3
CO3	2	2	2	3	2
CO4	2	2	3	3	3
CO5	3	2	3	2	2

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total		
Internal	6	6	6	6	6	30		
External	14	14	14	14	14	70		
Total	20	20	20	20	20	100		

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

1 2		CO1	CO2	CO3	CO4	CO5
Assignments	- and the second	1 🗧	1	1	1	1
Seminar	all le	1 3	1	1	1	1
Test (Internal 1 & Internal II)	40	2	2	2	2	2
Attendance		2 9	2	2	2	2
TOTAL		6 3	6	6	6	6
81]][[

Category	CO1	CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question) 14 x 5 = 70					
TOTAL	14	14	14	14	14

Theory: Course Code, Course Title	<u>E & IT 2.4. (B) (22): BIO- COMPUTER</u> ARCHITECTURE & ORGANIZATION	Credits: 4
Unit -1	BASIC STRUCTURE OF COMPUTERS:	Hours*
	Computer Types, Functional units, Basic operational concepts, Bus structures, Software, Performance, multiprocessors and multi computers.	12
	Data types, Complements, Data Representation. Fixed Point Representation. Floating – Point Representation. Error Detection codes.	
	COMPUTERARITHMETIC: Addition and subtraction ,multiplication Algorithms, Division Algorithms, Floating point Arithmetic operations.	
TT 1/ A	Decimal Arithmetic unit, Decimal Arithmetic operations.	10
Unit -2	REGISTERTRANSFERLANGUAGEANDMICRO-OPERATIONS: Register Transfer language. Register Transfer, Bus and memory transfer,	12
	Arithmetic Micro-operations, logic micro operations, shift micro-	
	operations, Arithmetic logic shift unit. Instruction codes. Computer	
	Registers Computer instructions -Instruction cycle. Memory Reference	
	Instructions.	
	CENTRAL PROCESSING UNIT - Stack organization. Instruction	
	formats. Addressing modes. DATA Transfer and manipulation. Program	
Unit -3	control. Reduced Instruction set computer.	12
Unit -3	MICRO PROGRAMMED CONTROL: Control memory, Address	12
	sequencing, microprograme xample, Design of control unit-Hardwired control. Micro programmed control. THE MEMORY SYSTEM: Memory	
	Hierarchy, Main memory, Auxiliary memory, Associative memory,	
	Cache memory, Virtual memory, Memory management hardware.	
Unit -4	INPUT-OUTPUT ORGANIZATION:	12
Omt -4	Peripheral Devices, Input-Output Interface, Asynchronous data transfer	14
	Modes of Transfer, Priority Interrupt, Direct memory Access, Input –	
	Output Processor (IOP), Serialcommunication;	
Unit -5	PIPELINE AND VECTOR PROCESSING:	12
	Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline,	
	RISC Pipeline Vector Processing, Array Processors. Multi processors:	
	Characteristics of Multiprocessors, Interconnection Structures,	
	Interprocessor Arbitration. Interprocessor Communication and	
	Synchronization, Cache Coherence.	
TASKS AND A	SSIGNMENTS:	
TEXT BOOKS		

TEXT BOOKS:

1) Computer System Architecture–M. MorisMano ,IIIrdEdition,PHI/ Pearson, 2006.

2) ComputerOrganization-CarHamacher, Zvonks Vranesic, SafwatZaky, V Edition, McGraw Hill, 2002.

REFERENCE BOOKS:

1) Computer Organization and Architecture–William Stallings Seventh Edition, PHI/Pearson, 2006.

2) Computer Architecture and Organization–JohnP.Hayes,McGraw Hill International editions, 1998.

	Course Outcome			
CO 1	 Leaning concept of functional units of computer To learn basic knowledge of arithmetic operations 	Remember		
CO 2	 Leaning concept of bus and memory transfer To learn basic knowledge of instruction cycle Learn about stack organization 	Analyze		

CO 3	▲ Leaning concept of hardwired control	Understand
	▲ To learn basic knowledge of memory system	
	▲ Learn about memory management hardware	
CO 4	▲ Leaning concept of input output interface	Skill
	▲ To learn basic knowledge of modes of data transfer	
	▲ Learn about serial communication	
CO 5	▲ Leaning about instruction pipeline	Apply
	▲ To understand the characteristics of multiprocessors	
	▲ Learn about interprocessor	

	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	2	2
CO2	3	3	2	3	3
CO3	2	2	2	3	2
CO4	2	2	3	3	3
CO5	3	2	3	2	2

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14/8	14	14	14	70
Total	20	20	20	20	220	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	7/12	// 1/	1	1	1
Seminar	1	1	1	1	1
Test (Internal 1 & Internal II)	2//	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

^{నిత్రో} సర్యం ప్రతిష్టితమి

Category	CO1	CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question) $14 \times 5 = 70$					
TOTAL	14	14	14	14	14

Theory: Course Code, Course Title	<u>E & IT 2.4. (C). (22): BIO- ARTIFICIAL NEURAL</u> <u>NETWORKS AND FUZZY LOGICS</u>	Credits: 4
Unit -1	Introduction to Neural Networks: Introduction, Humans and Computers, Organization of the Brain, Biological Neuron, Biological and Artificial Neuron Models, Hodgkin- Huxley Neuron Model, Integrate-and-Fire Neuron Model, Spiking Neuron Model, Characteristics of ANN, McCulloch-Pitts Model, Potential Applications of ANN.	Hours* 12
Unit -2	Essentials of Artificial Neural Networks: Artificial Neuron Model, Operations of Artificial Neuron, Types of Neuron Activation Function, ANN Architectures, Classification Taxonomy of ANN- Connectivity, Neural Dynamics (Activation and Synaptic), Learning Strategy (Supervised, Unsupervised, Reinforcement), Learning Rules, Types of Application.	12
Unit -3	Feed Forward Neural Networks: Introduction, Perceptron Models: Discrete, Continuous and Multi-Category, Training Algorithms: Discrete and Continuous Perceptron Networks, Perceptron Convergence theorem, Limitations of the Perceptron Model, Applications. Multilayer Feed Forward Neural Networks, Credit Assignment Problem, Generalized Delta Rule, Derivation of Back- propagation(BP) Training, Summary of Back-propagation Algorithm, Kolmogorov Theorem, Learning Difficulties and Improvements	12
Unit -4	Associative Memories of Fuzzy logics: Paradigms of Associative Memory, Pattern Mathematics, Hebbian Learning, General Concepts of Associative Memory Associative Matrix, Association Rules, HammingDistance, TheLinear Associator, Matrix Memories, Content Addressable Memory, Bidirectional Associative Memory (BAM) Architecture ,BAM Training Algorithms: Storage and Recall Algorithm, BAM Energy Function, Proof of BAM Stability Theorem. Architecture of Hopfield Network: Discrete and Continuous versions, Storage and Recall Algorithm, Stability Analysis, Capacity of the Hopfield Network.	12
Unit -5	Classical & Fuzzy sets Fuzzy Logic System Components& Applications: Introduction to classical sets – properties, Operations and relations; Fuzzy sets, Membership, Uncertainty, Operations, Properties, fuzzy relations, cardinalities, membership functions. Fuzzification, Membership Value assignment, development of rule base and decision making system, Defuzzification to crisp sets, Defuzzification methods. Neural network applications: Process identification, Fraction Approximation, Control and Process Monitoring, Fault diagnosis and Load forecasting Fuzzy logic applications: Fuzzy logic control and Fuzzy classification.	12
TEXT BOOKS 1) Neural NetRai- PHI P	ASSIGNMENTS: S: wroks, Fuzylogic, Gnenetic algorithms: synthesis and applications by Rajase	

REFERENCE BOOKS:

- 1) Neural and Fuzzy Systems: Foundation, Architectures and Applications, N. Yadaiah and S. BapiRaju, Pearson Education
- 2) Neural Netwroks James A Freeman and Davis Skapura, Pearson, 2002
- 3) Neural Netwroks Simon Hykins, Pearson Education.
- 4) Neural Engineering by C. Eliasmith and CH. Anderson, PHI.
- 5) Neural Netwroks and Fuzzy Logic System by BrokKosko, PHI Publications.

COURSE OUTCOMES:

	Course Outcome	Level
CO 1	▲ Leaning concept of biological neurons	Remember
	▲ To learn basic knowledge of different neuron models	
	▲ Learn about applications of ANN	
CO 2	▲ Leaning the concept of artificial neuron	Analyze
	▲ To learn basic knowledge of Neural dynamics	
CO 3	▲ Leaning concept of feed forward neural networks	Understand
	▲ To learn basic knowledge of delta rule	
	▲ Understand the back propagation algorithm	
CO 4	▲ Leaning concept of fuzzy memory organization	Skill
	▲ To learn basic knowledge of BAM	
	To understand BAM functions	
CO 5	▲ Leaning concept of fuzzy sets	Apply
	▲ To learn basic knowledge of defuzzification	
	▲ Learn about fuzzy logic applications	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	53	3
CO2	2	3	2	2	3
CO3	2	2	2-2-	\$ 3	2
CO4	3	3	2	3	3
CO5	2	3	2	2	2

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal I & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

M.Sc. Electronics & Instrumentation Technology, Syllabus 2022-23 onwards – College of Sciences, ANU

Category	C01	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

Practi	al: LABORATORY-III /PRACTICAL	Credits: 4		
	Course Title: TRANSDUCERS & INSTRUMENTATION LAB			
List of l	xperiments:	HOURS		
1) Cha	acteristics of LM35 and measurement of Temperature	3		
2) Cha	acteristics of Thermistor, Pt100 and measurement of Temperature	3		
3) Cha	acteristics of Thermocouple and measurement of Temperature	3		
4) Measurement of weight using Strain gauge				
5) Mea	urement of Torque using Strain gauge	3		
6) Mea	urement of Pressure using Strain gauge	3		
7) Cha	acteristics of RTO (PT100) and measurement of Temperature	3		
8) Cha	acteristics of LVDT and measurement of Displacement	3		
TASKS	AND ASSIGNMENTS:	-		
1) Virt	ally executing the experiments			
2) Obs	rvation submission			
3) Viva	Voce			
4) Pra	tical Examination			

	Course Outcome	Level			
CO 1	CO1 Leaning concept of instrumentation and measuring systems				
CO 2	Students will learn the performance characteristics of instruments	Analyze			
CO 3	Leaning concept of formulation of systems	Understand			
CO 4	Studying the working of display modules	Skill			
CO 5	Leaning concept of temperature sensors	Apply			

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	2	3
CO2	3	2	3	2	3
CO3	3	3	3	<u>సు స</u> 2పిత్రవి	3
CO4	2	3	3	3	2
CO5	3	2	3	3	3

	PRACTICAL: MICROCONTROLLER LAB	Credits: 4
LIS	ST OF EXPERIMENTS:	HOURS
1)	Write an 8051 c Program to send values from 00 to FF to the port P1 with time	3
2)	delay 1000m.s. Write an 8051 c Program to toggle all the bits of PI continuously with time delay 500 m.s.	3
3)	Write an 8051 c Program to send values from0X0F and 0x0F to PI continuously with some time delay.	3
4)	Write an 8051 c Program to implement stack case wiring, two switches are connected to PI.0 &PI.I and lamp is connected to PI.7.	3
5)	Write an 8051 c Program to rotate a bit starting from PI.0 to PI.7 continuously with some delay b/w them (PI is output port).	3
6)	Write an 8051 c Program to transfer the letter 'A' serially at baud rate 9600bps continuously 8-bit data and 1 start & 1 stop bit.	3
7)	Write an 8051 c Program to send "Dept. of E&IT" to 2x16 milford serial LCD serially at baud rate 2400 bps continuously using 8-bit data.	3
8)	Interfacing Stepper Motor	3
9)		3 3
	Interfacing of LCD & LED	3
	Interfacing of Seven Segment Display	3
	Interfacing of ADC	3
13)	Test Basic Application Using ARM S32440A	
	a) Led Testing	
	b) PWM Buzzer ADC	
	c) Key Board Interfacing	
ТА	SKS AND ASSIGNMENTS:	
1)	Virtually executing the experiments	
2)	Observation submission	
3)	Viva-Voce	
4)	Practical Examination	

	Course Outcome	Level
CO 1	▲ Learn about timer and counter applications	Remember
CO 2	 Leaning concept of PIC Learn about A/D converters 	Analyze
CO 3	▲ To learn basic knowledge of pin configurations of PI	Understand
CO 4	 Leaning concept of interfacing devises To learn basic knowledge of ADC and DAC 	Skill
CO 5	▲ Understand about interfacing	Apply

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	2	2
CO2	3	3	3	3	2
CO3	2	3	2	2	3
CO4	3	3	2	2	3
CO5	2	2	3	3	2

M.Sc. ELECTRONICS & INSTRUMENTATION TECHNOLOGY SEMESTER –III

S. No.	Components of Study	Title of the Course	Title of the Paper	No. of Credits	Internal Assessment Marks	Semester end Examinations Marks	Total Marks
1.	Core-I	E&IT 3.1 (22)	Analytical Instrumentation	4	30	70	100
2.	Core-II	E&IT 3.2 (22)	Embedded System	4	30	70	100
3	Compulsory foundation	E&IT 3.3 (a) (22)	Digital Signal Processing	4	30	70	100
		E&IT 3.3 (b) (22)	Analog Communications				
		E&IT 3.3 (c) (22)	Optical Communications		PGH		
4	Elective foundation	E&IT 3.4 (a) (22)	Industrial and Process Control Instrumentation	4	30 P NA	70	100
		E&IT 3.4 (b) (22)	System On Chip Design		ARJUNA		
		E&IT 3.4 (c) (22)	Wireless Sensors & Networks				
5.	Practical-V		Advanced Instrumentation Laboratory	4	30	70	100
6.	Practical-VI		Embedded Systems Laboratory	4	30	70	100
		TOTAL	•	24	180	420	600

Elective I – Choose one paper Elective II – Choose one paper.

Components	Weightage (%)
(Internals I& II)	30
End Semester Exams	70

Theory:		
Course Code,	E & IT 3.1. (22): ANALYTICAL INSTRUMENTATION	Credits:
Course Title		4
Unit -1	COLORIMETERS AND SPECTROPHOTOMETERS Principle and working with a Block diagram. Salient features of individual blocks. Specifications of a colorimeter. Applications of colorimeters. Spectrophotometers-Principle and working with block diagram. Salient features of individual blocks. Specification and operation of Spectrophotometer. Types of spectrophotometers –Ultraviolet, Visible and Infrared AAS - Applications of Spectrophotometers to chemical analysis.	Hours 12
Unit -2	CONDUTIVITY, pH METERS AND POLAROGRAPHS Conductivity Bridge- Principle and working of a conductivity bridge with a block diagram. Salient features of individual blocks. Applications of conductivity bridges. pH meters- Principle and working with a block diagram. Salient features of individual blocks. Types of pH meters. Applications of pH meters in chemical and industrial fields. Polorograph-principle and working with a block diagram. Salient features of individual blocks. Characteristics of dropping mercury electrode. Polorogram. Applications of polorograph in chemical and industrial fields.	12
Unit -3	Nuclear Magnetic Resonance Spectrometers- Principle and working with suitable schematic/block diagrams.Experimental arrangement. Salient features of individual blocks. Applications of NMR spectrometer. Electron Spin Resonance- Principle and working with suitable schematic/block diagrams.Experimental arrangement. Salient features of individual blocks. Applications of ESR spectrometer. Mass Spectrometer- Principle and working.Description of individual blocks of experimental arrangement. Application of Mass Spectrometers	12
Unit -4	ELECTRONMICROSCOPESTECHNIQUESANDAPPLICATIONS	12
Unit-5	THERMALANALYSIS&CHROMATOGRAPHSANDAPPLICATIONSThermo gravimetric and Differential Thermal Analysis-Principle and working with a Schematic diagram. Description of individual blocks. Applications.Chromatographs- Gas and Liquid Chromatographs- Principle and working with a block diagrams. Applications.Supercritical fluid chromatography (SFC)- Principle and working with a block diagrams. Applications.	12

TASKS AND ASSIGNMENTS: REFERENCE BOOKS:

- 1) Hand Book of Analytical Instruments- R. S. Khandpur (Unit IV
- 2) Principles of Instrumental Analysis- Skoog (Unit IV)
- 3) Instrumental methods of Analysis- Chatwal and Anand (Unit I, II, III)
- 4) Instrumental methods of Chemical Analysis- B. K. Sharma. (Unit IV)

COURSE OUTCOMES:

	Course Outcome	Level
CO 1	▲ Leaning working principle of colorimeters	Remember
	▲ To learn basic knowledge of spectrophotometer	
	▲ Learn about applications of spectrophotometer	
	▲ Understanding the working principle of conductivity and pH meters	Understand
CO 2	▲ To learn basic knowledge of polorograph	
	▲ Learn about polorograph industrial applications	
CO 3	▲ Understanding the concept of resonance	Apply
	▲ To learn basic knowledge of electron spin resonance	
	▲ Understand about Mass spectrometer	
CO4	▲ Leaning concept of TEM and SEM	Analyze
	▲ To learn basic knowledge of AFM	
CO5	▲ Leaning concept of TEM and SEM	Skill
	▲ To learn basic knowledge of AFM	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	2 3	3
CO2	2	3	2	2	3
CO3	2	82	2-2/	3	2
CO4	3	3	2	3	3
CO5	2	3	2	2	2

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	C01	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal I & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

M.Sc. Electronics & Instrumentation Technology, Syllabus 2022-23 onwards – College of Sciences, ANU

Category	CO1	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

Theory:		
Course Code,	E & IT 3.2. (22): EMBEDDED SYSTEMS	Credits:
Course Title		4
Unit -1	EMBEDDED SYSTEMS AND ARCHITECTURE Embedded System	Hours
	Architecture - Introduction - hardware and software components -	
	Classification -Embedded Systems on a Chip (SoC). I/O Devices -	12
	Device I/O Types and Examples, Applications of Embedded Systems,	
	Tools For Development of embedded systems.	
Unit -2	'C' PROGRAMMING FUNDAMENTALS Review of C	12
	Programming - Program Elements, Macros and functions -Use of	
	Pointers - NULL Pointers - Use of Function Calls – Multiple function	
	calls in a Cyclic Order in the Main Function Pointers – Arrays-Structures	
TI 4 2	and Unions – Data Structures - Linked Lists.	10
Unit -3	OS FOR EMBEDDED SYSTEMS	12
	Basic Features of an Operating System - Kernel Features: Real-time	
	Kernels, Polled Loops System, Co-routines, Interrupt-driven System,	
	Multi-rate System - Processes and Threads - Inter-process	
	Communication – Signals, Shared Memory Communication, Message- Based Communication.	
Unit -4	SCHEDULING AND MEMORY MANAGEMENT	12
0mt -4	Scheduling - Rate-Monotonic Scheduling, Earliest-Deadline First	14
	Scheduling, Task Assignment, Fault-Tolerant Scheduling - Real-time	
	Memory Management - Process Stack Management, Dynamic Allocation	
	- I/O- Synchronous and Asynchronous I/O, Interrupt Handling, Device	
	Drivers, Real-time Transactions and Files - Example Real-time OS -	
	VxWorks, RT-Linux, Psos	
Unit-5	NETWORK BASED EMBEDDED APPLICATIONS	12
0	Network Fundamentals - Layers and Protocols - Network Architectures,	
	Network Components: Bridges, Routers, Switches - Distributed	
	Embedded Architectures -Elements of Protocol Design	
	Network Based Design - Internet-Enabled Systems - Protocols for	
	industrial and control applications, Internetworking Protocols - Wireless	
	Applications, Blue-tooth	
TASKS AND AS	SIGNMENTS:	
REFERENCE B	OOKS:	
1) Embedded Sv	stems Architecture, Programming and Design - Rajkamal, TATA McGraw	-Hill, First
reprint Oct. 20		,
-	oncepts for Embedded Systems - Qing Li and Carolyn Yao, CMP Books 200)3. (Unit I.
Δ (Kour Third Co		· · · · ·

- 3) Steve Heath, Embedded Systems Design, Second Edition-2003, Newnes,
- 4) David E. Simon, An Embedded Software Primer, Pearson Education Asia, First Indian Reprint 2000.
- 5) Wayne Wolf, Computers as Components; Principles of Embedded Computing System Design Harcourt India, Morgan Kaufman Publishers, First Indian Reprint 2001.

Course Outcome	Level
 Understanding the hardware and software components To learn basic knowledge of I/O devices Learn about embedded tools 	Remember

CO 2	 Leaning concept of c program elements To learn basic knowledge of function calls Learn about arrays, structures and unions 	Understand
CO 3	 Leaning concept of c program elements To learn basic knowledge of function calls Learn about arrays, structures and unions 	Apply
CO4	 To learn basic knowledge of dynamic allocation Learn about real time OS 	Analyze
CO5	 Leaning concept of network fundamentals To learn basic knowledge of protocol design Learn about proximity and non proximity types 	Skill

	PO1	PO2	PO3	PO4	PO5
CO1	2	3	2	2	2
CO2	3	3	2	3	3
CO3	2	2	2	3	2
CO4	2	2	3	3	3
CO5	3	2	3	2	2

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	R C	CO1	CO2	CO3	CO4	CO5
Assignments	and the second s	1	1	1	1	1
Seminar		1	1	1	1	1
Test (Internal 1 & Internal II)	Not 54 000 000	2	2	2	2	2
Attendance	2 words Della	2	2	2	2	2
ΤΟΤΑΙ		6	6	6	6	6

MAPPING COURSE OUTCOME WITH EXTERNAL ASSESSMENT:

Category	CO1	CO2	CO3	CO4	CO5
Part – A	14	14	14	14	14
Essay Type (Either/OR-type Question)					
$14 \ge 5 = 70$					
TOTAL	14	14	14	14	14

Theory: Course Code,	<u>E & IT 3.3.(A) (22): DIGITAL SIGNAL</u> PROCESSING	Credits 4
Course Title		TT *
Unit -1	Discrete Time (DT) Sequences and Systems: a. Introduction: Elements of Continuous Time and Digital Signal	Hours* 12
	a. Introduction: Elements of Continuous Time and Digital Signal Processing Systems. Advantages of DSP Systems over Analog	14
	Processing Systems. Advantages of DSI Systems over Analog Processing System.	
	b. Sampling and Reconstruction: Graphics and analytical proof of	
	sampling theorem. Reconstruction of signal from its samples. Effect	
	of under sampling-Aliasing.	
	c. DT Sequences: Representation of DT sequences, Classification of	
	discrete time sequences and manipulation of DT sequences.	
	d. DT systems: Input-out-put description of Systems, Classification of	
	DT Systems: Linearity, static, Time-Invariant, Causality and Stability	
	of systems. Convolution and its properties.	
	e. DTFT: Magnitude and phase spectrum, properties,	
Unit -2	Fourier Transformation of Discrete Time Sequences	12
	Transforms and its properties. Applications of Z. Transforms: System	
	Function, Impulse Response, Causality and Stability of LTI systems in	
	terms of System Function Solutions of Linear Constant Coefficient	
	Difference Equations.	
T T 1 / 0	DFT and FFT: Magnitude and phase spectrum, properties.	
Unit -3	Design and Realization of Digital Filters IIR Design	
	Digital Filter-IIR Design: Introduction, Normalized Butterworth	
	functions. Design fo Digital filters using Bilinear Transformation,	
	Impulse invariance and Step Invariance Transformation Methods, Frequency Transformation in Analog and Digital Domains. Realization of	12
	IR System structures: Realization of Direct form structures, Cascade	12
	form Structures and Parallel form structures.	
Unit -4	Design and Realization of Digital Filters IIR Design	12
Omt 4	Digital Filter- FIR Design: Introduction, Characteristics of Linear Phase	12
	FIR filters, Designing FIR filters using Windowing Methods. Frequency	
	Sampling Method, Comparison of IIR & FIR Filters. Realization of FIR	
	system structures: Realization of Direct Form, Transposed Direct Form,	
	Direct form for Linear-Phase FIR systems and Cascade Form structures.	
Unit -5	Digital Signal Processors and Applications:	12
	a. Introduction to programmable DSPs: Multiplier and Multiplier	
	Accumulator (MAC), multiple access memory, multiport memory,	
	VLSI Architecture, pipelining. Architecture of TMS 320C5X-	
	Introduction, Bus Structure, Central Arithmetic Logic Unit, Auxiliary	
	Registrar, Index Register, Auxiliary Register Compare Register,	
	Block Move Address Register, Memory mapped registers, program	
	controller, same flags in the status registers, On – Chip Registers, On-	
	Chip peripherals. Concept of assembly language.	
	b. Applications of Digital Signal Processing: Introduction, Speech	
	Processing, Speech Analysis, Speech coding, Sub-band Coding, Channel Vacadar, Homemorphia, Vacadar, Digital Processing of	
	Channel Vocoder, Homomorphic Vocoder, Digital Processing of Audio Signals, Padar Signal Processing	
A SKS AND A	Audio Signals, Radar Signal Processing. SSIGNMENTS:	
BOOKS FOR S	al Processing : Principles, Algorithms, and Applications 4 Edition (English,	
) Digital Sign	at Despessing a Demonstrate Algorithman and Ameliastican (Delition (Deslight))	

- 2) Discrete-Time Signal Processing, Alan V. Oppenheim, Ronald W. Shafer and John R. Buck, 2/e, Pearson Education, Inc., 2000. (UNIT- I,II,III)
- 3) Digital Signal Processors: Architecture, Programming and Applications B. Venkataramani and M. Bhaskar TMH, 2002. (UNIT IV)

REFERENCE BOOKS:

- 1) Sanjit K. Mitra, "Digital Signal Processing: A Computer Based Approach", TMH, 1998.
- 2) Johnny R. Johnson, "Introduction to Digital Signal Processing", PHI, 2000.
- 3) Boaz Porat, "A Course in Digital Signal Processing", John Wiley & Sons (Asia) Pte. Ltd., 1997.
- 4) Texas Instruments TMS 320C5X User's Guide, 1997.

COURSE OUTCOMES:

	Course Outcome	Level
CO 1	▲ Leaning concept of time and digital signal processing	Remember
	▲ To learn basic knowledge of DT syste	
	▲ Learn about DIFT	
CO 2	Leaning concept of Z-transforms and LTI systems	Analyze
	▲ To learn basic knowledge of DFT and FFT	-
CO 3	▲ Leaning concept of Z-transforms and LTI systems	Understand
	▲ To learn basic knowledge of DFT and FFT	
CO 4	Leaning concept of Z-transforms and LTI systems	Skill
	To learn basic knowledge of DFT and FFT	
CO 5	▲ Leaning concept of MAC	Apply
	▲ To learn basic knowledge of TMS 320c5X	
	▲ Learn about Radar signal processing	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3
CO2	2	3	2	2	3
CO3	2	2	2	3	2
CO4	3	3	- 2 5	3	3
CO5	2	3	SO 2 2	2	2

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal I & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

M.Sc. Electronics & Instrumentation Technology, Syllabus 2022-23 onwards – College of Sciences, ANU

Category		CO2	-	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

Theory: Course Code, Course Title	<u>E & IT 3.3.(B) (22): ADVANCED COMPUTER</u> <u>ARCHITECTURE</u>			
Unit-1	Fundamentals of Computer Design:	Hours		
	Fundamentals of Computer design, Changing faces of computing and task of	12		
	computer designer, Technology trends, Cost price and their trends,			
	Measuring and reporting performance, Quantitative principles of computer			
	design, Amdahl's law.			
	Instruction set principles and examples- Introduction, Classifying instruction			
	set- Memory addressing- type and size of operands, Operations in the instruction set.			
Unit-2	Pipelines:	12		
	Introduction, Basic RISC instruction set, Simple implementation of RISC instruction set, Classic five stage pipe lined RISC processor, Basic performance issues in pipelining, Pipeline hazards, Reducing pipeline branch penalties. Memory Hierarchy Design: Introduction, Review of ABC of cache, Cache performance, Reducing cache miss penalty, Virtual memory.			
Unit-3	Instruction Level Parallelism the Hardware Approach: Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling	12		
	using Tomasulo's approach, Branch prediction, high performance instruction delivery- hardware based speculation.			
Unit-4	ILP Software Approach:	12		
	Basic compiler level techniques, Static branch prediction, VLIW approach, Exploiting ILP, Parallelism at compile time, Cross cutting issues -Hardware verses Software.			
Unit-5	Multi Processors and Thread Level Parallelism:	12		
	Multi Processors and Thread level Parallelism- Introduction, Characteristics			
	of application domain, Systematic shared memory architecture, Distributed			
	shared – memory architecture, Synchronization.			
	ASSIGNMENTS:			
REFERENCE				
	nandMiikkoH.Lipasti-ModernProcessorDesign: Fundamentals of Super Scalar Pr ArchitectureandParallelProcessing-KaiHwang,FayeA.Brigs., MC Graw Hill.	rocessors		

 AdvancedComputerArchitecture-ADesignSpaceApproach- DezsoSima, Terence Fountain, Peter Kacsuk, Pearson Ed.

	Course Outcome	Level
CO1	▲ Understand the computer design	Remember
	▲ To learn basic knowledge of classifying instruction set	
	▲ Learn about instruction set	
CO2	Understanding the basic RISC instruction set	
	▲ To learn basic knowledge of memory organization	Understand
CO3	▲ Leaning concept of instruction level parallelism	Apply
	▲ To learn basic knowledge of branch prediction	
	▲ Learn about hardware based speculation	

CO4	 Understand the compiler level techniques To learn basic knowledge of VLIW approach 	Analyze
CO5	 Leaning concept of multi processors To understand characteristics of applications of multi processor 	Skill

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3
CO2	2	3	2	2	3
CO3	2	2	2	3	2
CO4	3	3	2	3	3
CO5	2	3	2	2	2

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70/-
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	1 🚿	1	6	1	1
Seminar	1	1	1	1	R2
Test (Internal I & Internal II)	2	2	2	2/	2
Attendance	2 -	2	2	28	2
TOTAL	6	6	6	6	6

Category Category	C01	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

Theory: Course Code, Course Title	<u>E & IT 3.4.(A) (22): INDUSTRIAL AND PROCESS</u> <u>CONTROL INSTRUMENTATION</u>	Credits: 4
Unit -1	INDUSTRIAL COMPONENTS AND CONTROL SYSTEMS Elements of process Instrumentation: Switches, Relays, Actuators & Valves, Transmitters. Basic control actions - Proportional (P), Proportional + Integral (PI), Proportional + Derivative (PD), Proportional + Integral + Derivative (PID) Hydraulic, Pneumatic and Electronic Controllers. Digital PID Controllers, Cascade and Feed Forward Control Systems, Direct Digital Control Systems, Supervisory Control Systems, Distributed Control Systems (DCS).	Hours* 12
Unit -2	PLC & SCADA CONTROLLERS AND APPLICATIONS PLC block diagram, PLC Hardware, PLC Operations, Instructions of PLC, Programming the PLC, Ladder diagram programming, Applications of PLC. SCADA fundamentals, Overview of SCADA software	12
Unit -3	INSTRUMENTATION IN IRON AND STEEL INDUSTRIES Description of the process, Measurement hardware, valves, Controllers and displays, Computer Applications and Typical control systems as applied to the iron and steel industries.	12
Unit -4	INSTRUMENTATION IN INDUSTRIES Control of Distillation Towers, Refrigeration units, System boilers, Furnaces, Crystallizers, Heat exchanges, Pumps, Compressors and Evaporators as applied to the petrochemical industry, Paper and Pharmaceutical Industries.	12
Unit -5	INSTRUMENTATION FOR INDUSTRIAL SAFETY Intrinsic safety: Definition - conservation and emergency vents - flame, fire and smoke detectors - leak detectors - metal detectors. safety instrument system (sis): need, features, components, difference between basic process control system and sis. Safety Integrity Levels (SIL), Determination method : as -low as reasonably practical (alarp), evaluating risk: risk matrix, risk graph, layers of protection analysis (lopa) – issues related to system size and complexity –issues related to field device safety.	12
2) Modern Cont		

4) Process/Industrial Instrumentation – D. M. Considine (Unit I, II)

	Course Outcome	Level
CO 1	▲ Leaning concept of industrial elements	Remember
	▲ To learn basic knowledge of PID controller	
	▲ Learn about different controllers applications in industries	
CO 2	▲ Understanding the working of PLC controller	Analyze
	▲ To learn basic knowledge of PLC logic	
	▲ Learn about SCADA applications	

CO 3	 Understanding the working of PLC controller To learn basic knowledge of PLC logic Learn about SCADA applications 	Understand
CO 4	 Understand the different control devices in petrochemical industry To learn basic knowledge of paper and pharmaceutical industries 	Skill
CO 5	 Understand the different control devices in petrochemical industry To learn basic knowledge of paper and pharmaceutical industries 	Apply

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3
CO2	2	3	2	2	3
CO3	2	2	2	3	2
CO4	3	3	2	3	3
CO5	2	3	2	2	2

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	2 6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	C01	CO2	CO3	CO4	CO5
Assignments		1		1	1
Seminar	1	1		1	1
Test (Internal I & Internal II)	2	2	2	2	2
Attendance	23	2	255	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

Theory: Course Code, Course Title	E & IT 3.4.(B) (22): SYSTEM ON CHIP DESIGN	Credits: 4
Unit -1	Introduction to the System Approach:	Hours*
	System Architecture, Components of the system, Hardware & Software,	12
	Processor Architectures, Memory and Addressing. System level	
	interconnection, an approach for SOC Design, System Architecture and	
	Complexity.	
Unit -2	Processors & Architectures:	12
	Introduction, Processor Selection for SOC, Basic concepts in Processor	
	Architecture, Micro Architecture, Basic elements in Instruction	
	handling. Buffers: minimizing Pipeline Delays, Branches, More Robust	
	Processors, Vector Processors and Vector Instructions extensions, VLIW	
	Processors, Superscalar Processors.	
Unit -3	Memory Design for SOC:	12
	Overview of SOC external memory, Internal Memory, Size, Scratchpads	
	and Cache memory, Cache Organization, Cache data, Write Policies,	
	Strategies for line replacement at miss time, Types of Cache, Split – I,	
	and D – Caches, Multilevel Caches, Virtual to real translation, SOC	
Unit -4	Memory System, Models of Simple Processor – memory interaction. Inter connect Customization and Configuration:	12
Umt -4	Connect Architectures, Bus: Basic Architectures, SOC Standard Buses,	14
	Analytic Bus Models, Using the Bus model, Effects of Bus transactions	
	and contention time. SOC Customization: An overview, Customizing	
	Instruction Processor.	
Unit -5	Interconnect Configuration:	12
	Reconfiguration Technologies, Mapping design onto Reconfigurable	
	devices, Instance- Specific design, Customizable Soft Processor,	
	Reconfiguration - overhead analysis and trade-off analysis on	
	reconfigurable Parallelism.	
TASKS AND A	SSIGNMENTS:	
TEXT BOOKS:		
1) Computer Sy	stem Design System-on-Chip-Michael J.Flynnand Wayne Luk, Wiely India	Pvt. Ltd.
· · ·	stem on a Chip: Devices and Components-Ricardo Reis, 1st Ed., 2004, Sprin	
REFERENCE		-

REFERENCE BOOKS:

- 1) ARM System on Chip Architecture Steve Furber –2nd Ed., 2000, Addison Wesley Professional.
- 2) System on Chip Verification Methodologies and Techniques Prakash Rashinkar, Peter

PatersonandLeenaSinghL, 2001, Kluwer Academic Publishers.

	Course Outcome	Level
CO 1	▲ Leaning concept of system architecture	Remember
	▲ To learn basic knowledge of SOC design	
	▲ Learn about system architecture	
CO 2	▲ Leaning about selection for SOC	Analyze
	▲ To learn basic knowledge of VLIW processors	
CO 3	▲ Leaning concept SOC external memory	Understand
	▲ To learn about types of cache	
	▲ Learn about memory interaction	
CO 4	▲ Leaning concept of SOC standard buses	Skill
	▲ To learn basic knowledge of bus transactions	

CO 5	★	Leaning concept of reconfiguration technologies	Apply
	▲	To learn basic knowledge of customizable soft processor	

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3
CO2	2	3	2	2	3
CO3	2	2	2	3	2
CO4	3	3	2	3	3
CO5	2	3	2	2	2

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

0

	C01	CO2	CO3	CO4	CO5			
Assignments	// 1	1	1	1 3	1			
Seminar	1	1	1	1	1			
Test (Internal I & Internal II)	2	2	2	2	A 2			
Attendance	2	2	2	2	2			
TOTAL	6	6	6	6	56			
		10031UL	0.201					

Category	CO1	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

Theory: Course Code, Course Title	<u>E & IT 3.4.(C) (22): DIGITAL SYSTEM DESIGN &</u> <u>DIGITAL IC APPLICATIONS</u>	Credits: 4
Unit -1	Digital Design Using HDL:	Hours*
Unit -1	Design flow, program structure, History of VHDL, VHDL requirements, Levels of Abstraction, Elements of VHDL, Concurrent and Sequential Statements, Packages, Libraries and Bindings, Objects and Classes, Subprograms, Comparison of VHDL and Verilog HDL. VHDL Modeling: Simulation, Logic Synthesis, Inside a logic Synthesizer, Constraints, Technology Libraries, VHDL and Logic Synthesis, Functional Gate-Level verification, Place and Route, Post Layout Timing Simulation, Static Timing, Major Netlist formats for	12
Unit -2	design representation, VHDL Synthesis-Programming Approach. : Programmable Logic Devices (PLDs) & Memories:	12
	Programmable Read Only Memory, Programmable Logic Array, Programmable Array Logic Devices, ROM: Internal structure, 2D- Decoding, Commercial ROM types, timing and applications,. Static RAM: Internal structure, SRAM timing, standard, synchronous SRAMS, Dynamic RAM: Internal structure, timing, synchronous DRAMs. Design considerations of PLDs with relevant Digital ICs.	
Unit -3	Digital Logic Families and Interfacing:	12
	Introduction to logic families, CMOS logic, CMOS steady state and dynamic electrical behavior, CMOS logic families. Bipolar logic, transistor-transistor logic, TTL families, CMOS/TTL interfacing, low voltage CMOS logic and interfacing, Emitter coupled logic.	
Unit -4	Combinational Logic Design:	12
	Adders & Subtractors, Ripple Adder, Look Ahead Carry Generator, Binary Parallel Adder, Binary Adder-Subtractor, ALU, Decoders, encoders, three state devices, multiplexers and demultiplexers, Code Converters, parity circuits, comparators, multipliers, Barrel Shifter, Simple Floating-Point Encoder, Cascading Comparators, Dual Priority Encoder, Design considerations with relevant Digital ICs, modeling of Circuits by using VHDL.	
Unit -5	Sequential Logic Design:	12
	SSI Latches and Flip-Flops, Counters, Design of Counters using Digital ICs, Ring Counter, Johnson Counter, Modulus N Synchronous Counters, MSI Registers, Shift Registers, Modes of Operation of Shift Registers, Universal Shift Registers, MSI Shift Registers, Design considerations with relevant Digital ICs, modeling of circuits by using VHDL.	
	SSIGNMENTS:	
FEXT BOOKS		
2005.	gn Principles & Practices – John F. Wakerly, PHI/ Pearson Education Asia, 3 /ith TTL Integrated Circuits: Robert L. / John R. Morris & Miller.	Brd Edition,

REFERENCE BOOKS:

- 1) "Fundamentals of Digital logic design with VHDL". Stephen Brown & Zvonko Vranesic, Tata McGraw Hill, 2nd edition.
- 2) VHDL Primer J. Bhasker, Pearson Education/ PHI, 3rd Edition.
- 3) PrakashRashinkar, Peter Paterson and Leena SinghL, 2001, Kluwer Academic Publishers.

	Course Outcome	Level
CO 1	▲ Leaning concept of VHDL	Remember
	▲ To learn basic knowledge of Verilog HDL	
	▲ Learn about VHDL synthesis	
CO 2	▲ Leaning concept of PLDs	Analyze
	▲ To learn basic knowledge of commercial ROM types	
	▲ Learn about SRAM and DRAMs	
CO 3	▲ Understanding the CMOS logic	Understand
	▲ To learn basic knowledge of CMOS interfacing	
CO 4	▲ Leaning concept of adders	Skill
	▲ To learn basic knowledge of decoders and encoers	
	▲ Learn about VHDL	
CO 5	▲ Leaning concept of sequential logic design	Apply
	▲ To learn basic knowledge of MSI registers	
	▲ Learn about VHDL	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5					
CO1	3	2	2	3	3					
CO2	2	8 3	2	2	3					
CO3	2	2	2	3	2					
CO4	3	3	2	3	3					
CO5	2	3	2	2	2					

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal I & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

 Blinking LED with Arduino Board. Fading LED with Arduino Board. Interfacing of Push Button with Arduino Board. Controlling the brightness LED using Potentiometer with Arduino Board. Generation of Pulse Width Modulation with Arduino Board. Interfacing of Temperature Sensor with Arduino Board. Interfacing LDR with Arduino Board. DC Motor Speed Controller with Arduino Board. Stepper Motor Control with Arduino Board. Measurement of Temperature on LCD Display. Playing Music with Arduino Board. RFID Interface with Arduino Board. GPS Interface with Arduino Board. Piezo Vibration Sensor with Arduino Board. 		PRACTICAL - EMBEDDED SYSTEMS LABORATORY-5	Credits: 4
16) Light Intensity Meter with Arduino Board.	2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12] 13] 14] 15)	 Fading LED with Arduino Board. Interfacing of Push Button with Arduino Board. Controlling the brightness LED using Potentiometer with Arduino Board. Generation of Pulse Width Modulation with Arduino Board. Interfacing of Temperature Sensor with Arduino Board. Interfacing LDR with Arduino Board. DC Motor Speed Controller with Arduino Board. Stepper Motor Control with Arduino Board. Measurement of Temperature on LCD Display. Playing Music with Arduino Board. RFID Interface with Arduino Board. GPS Interface with Arduino Board. Piezo Vibration Sensor with Arduino Board. Earth Moisture Sensor with Arduino Board. 	HOURS 3 3 3 3 3 3 3 3 3 3 3 3 3

	Course Outcome	Level
CO 1	▲ Leaning concept of instrumentation and measuring systems	Remember
	▲ To learn basic knowledge of order of instruments	
	▲ Learn about proximity and non proximity types	
CO 2	▲ Students will learn the performance characteristics of instruments	Analyze
	▲ To learn Hysteresis	
	▲ Learn about specifications of instruments	
CO 3	▲ Leaning concept of formulation of systems	Understand
	▲ To learn basic knowledge of order of instruments	
	▲ To learn about transient and random signals	
CO 4	▲ Studying the working of display modules	Skill
	▲ Learn about different types of recorders	
CO 5	▲ Leaning concept of calibration methods	Apply
	▲ Learning the various calibrations of sensors	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

A

	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2	3	3
CO2	3	3	3	3	3
CO3	2	2	3	3	3
CO4	3	3	3	2	3
CO5	3	3	3	3	3

PRACTICAL: ANALYTICAL INSTRUMENTATION-6	Credits: 4
1) PH electric Characteristics	HOURS
2) Conductivity Probe characteristics.	3
3) Spectral Response of LED , Filter & Detector	3
4) Spectral Response of Colour Filters.	3
5) Spectral Response of LDR & Solar Cell.	3
	3

	Course Outcome	Level
CO 1	▲ Leaning concept of instrumentation and measuring systems	Remember
	▲ To learn basic knowledge of order of instruments	
	▲ Learn about proximity and non proximity types	
CO 2	▲ Students will learn the performance characteristics of instruments	Analyze
	▲ To learn Hysteresis	
	▲ Learn about specifications of instruments	
CO 3	▲ Leaning concept of formulation of systems	Understand
	▲ To learn basic knowledge of order of instruments	
	▲ To learn about transient and random signals	
CO 4	Studying the working of display modules	Skill
	▲ Learn about different types of recorders	
CO 5	▲ Leaning concept of calibration methods	Apply
	▲ Learning the various calibrations of sensors	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	2	2	2/8/	3	3
CO2	3	3	215	2	3
CO3	2	2	3	3	3
CO4	3	3	3	2	2
CO5	3	3 5 000	ప్రతిష్టితి 3	3	3

M.Sc. ELECTRONICS & INSTRUMENTATION TECHNOLOGY

S. No.	Components of Study	Title of the Course	Title of the Paper	No. of Credits	Internal Assessment Marks	Semester end Examinations Marks	Total Marks		
1.	Core-I	E&IT 4.1(22)	PC Based Instrumentation with Lab view	4	30	70	100		
2.	Core-II	E&IT 4.2(22)	VLSI Design	4	30	70	100		
3.	Practical-VII		Virtual Instrumentation Laboratory	4	30	70	100		
4.	Project Work*						300		
	TOTAL								
	A CONTRACTOR								

SEMESTER-IV

Components	Weightage (%)
(Internals I& II)	30
End Semester Exams	70
	NIGARJUMA LUSAR

Theory: Course Code, Course Title	<u>E & IT 4.1. (22): PC BASED INSTRUMENTATION</u>						
Unit -1	INTRODUCTION TO PERSONAL COMPUTER (PC) AND	Hours*					
	PERIPHERALS	12					
	Computer organization and architecture – Computer components and						
	interconnections - Memory management - I/O devices - PC extension						
	slots (ISA, EISA & PCI).Serial, parallel and USB ports and their						
	applications. IEEE 488 and GPIB bus standard.						
Unit -2	V.I. PROGRAMMING TECHNIQUES	12					
	Virtual Instrumentation- Definition, flexibility- Block diagram and						
	Architecture of Virtual Instruments- Data flow techniques- graphical						
	programming in dataflow.						
	VI, sub VI, loops and charts, arrays, clusters and graphs, case and						
	sequence structures, forma nodes, local and global variables, string and						
	file Input/output, Instrument drivers						
Unit -3	DATA ACQUISITION IN VI	12					
	Introduction to data Acquisition-signal conditioning -classes of signal						
	conditioning-field wiring and signal measurement-ground loops-						
	A/D,D/A converters. Design and interface of digital input/output and						
	timer (DIOT) cards. Plug-in DAQ boards- Data acquisition modules						
	with parallel and serial communication.						
Unit -4	PC FOR MEASUREMENT AND CONTROL IN	12					
	INSTRUMENTATION						
	Role of PC in instrumentation. Application of PC for measurement of						
	Temperature, Pressure, Torque, Load, Displacement and P ^H . Waveform						
TT 1 / 7	generation- data visualization at multiple locations.	10					
Unit -5	PC FOR MEASUREMENT AND CONTROL IN REAL	12					
	TIME APPLICATIONS						
	Real time control and applications: design of ON/OFF controller, PID						
	controller, PC based digital storage oscilloscope. PC based UV -						
	Visible spectrophotometers.						
	SUCHMENTS.						

TASKS AND ASSIGNMENTS: BOOKS FOR STUDY:

- 1) Microprocessor and Interfacing: Programming and Hardware Douglas V. Hall
- 2) S.Gupta and J.P.Gupta, "PC interfacing for data acquisition and process control", Second Edition, Instrument Society of America, 1994.
- 3) LabVIEW based Advanced Instrumentation Systems S. Sumathi and P. Surekha ISBN-10 3-540-48500-7 Springer Berlin Heidelberg New York.
- 4) John Park and Steve Mackay, Practical Data Acquisition for Instrumentation and control Systems, Elsevier Publications.

REFERENCE BOOKS:

- 1) The 80X86 IBM Pc and compatable computers Vol 1, 2. Muhammad Ali Mazidi & J G Mazidi
- 2) The IBM PC Connection James F. Caffron
- 3) Computer based Industrial Control Krishna Kant
- 4) Computer Controlled Systems K.J. Astram&B.Wittenmark.
- 5) 5. IBM PC and Clones Hardware, Troubleshooting and Maintenance B. Govindarajalu (Unit I, II)

	Course Outcome	Level
CO 1	▲ Leaning concept of computer organization	Remember
	▲ To learn basic knowledge of PC extension slots	
	▲ Learn about USB ports and their applications	
CO 2	▲ Understand the virtural instrumentation and the architecture of VI	Analyze
	▲ To learn basic knowledge of VI programming	
CO 3	▲ Understanding the data acquisition and signal conditioning	Understand
	▲ To learn basic knowledge of A/D and D/A converters	
	▲ Learn about DAQ boards	
CO 4	▲ Leaning concept of role of pc in instrumentation	Skill
	▲ Understanding the concept of measuring parameters using VI	
CO 5	▲ Leaning concept of real time control and applications	Apply
	▲ To learn basic knowledge of PID controller	
	▲ Learn about spectrophotometers	

MAPPING OF PROGRAM OUTCOMES WITH COURSE OUTCOMES:

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3
CO2	2	0 3	2	2	3
CO3	2	18 12	2	3	2
CO4	3	3 ~	2	3	3
CO5	2	3	2	5 2	2

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total	V
Internal	6	6	6	6	6	30	
External	14	14	14	14	14	70	
Total	20	20	20	20	20	100	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5
Assignments	1	1	1	1	1
Seminar	1	1	1	1	1
Test (Internal I & Internal II)	2	2	2	2	2
Attendance	2	2	2	2	2
TOTAL	6	6	6	6	6

Category	CO1	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

Theory: Course Code, Course Title	<u>E & IT 4.2. (22): VLSI DESIGN</u>	Credits: 4
Unit -1	AN OVERVIEW OF VLSI AND LOGIC DESIGN WITH MOSFETS Complexity and Design, Basic concepts, Ideal switches and Boolean operations, MOSFETs as switches, Basic logics gates in CMOS, Complex logic gates in CMOS, Transmission Gate circuits, Clocking and data flow control.	Hours* 12
Unit -2	PHYSICAL STRUCTURE AND FABRICATION OF CMOS ICsIntegrated Circuit layers, MOSFETs, CMOS layers, Designing FET arrays, Overview of silicon processing, Material growth and deposition, Lithography, The CMOS process flow, Design rules.	12
Unit -3	ELEMENTS OF PHYSICAL DESIGN Basic concepts, Layout of basic structures, Cell concepts, FET sizing and the unit transistor, Physical design of logic gates, Design hierarchies.	12
Unit -4	ELECTRICAL CHARACTERISTICS OF MOSFETs MOS physics, nFET current-voltage equations, FET RC model, pFET characteristics, Modeling of small MOSFETs.	12
Unit -5	ELECTRONIC ANALYSIS & DESIGNING OF CMOS LOGIC GATES DCcharacteristics of the CMOS inverter, Inverter switching characteristics, Power dissipation, DC characteristics: NAND and NOR gates, NAND and NOR transient response, Analysis of complex logic gates, Gate design for transient performance, Transmission gates and pass transistors.	12
TASKS AND AS 1) John P. Uye	SSIGNMENTS: mura, "Introduction to VLSI circuits and Systems", John Wiley & Sons	(Asia) Pte.

Ltd., 2003.

REFERENCE BOOKS:

1) S.K. Ghandhi, "VLSI Fabrication principles", 2/e, John Wiley & Sons (Asia) Pte. Ltd., 2003.

2) S.M. Sze, "VLSI Technology", 2/e, McGraw-Hill, 1988.

	Course Outcome	Level
CO 1	▲ Leaning concept of Boolean operations	Remember
	▲ To learn basic knowledge of MOSFET switches	
	▲ Learn about clocking and data flow control	
CO 2	▲ Leaning concept of MOSFETs	Analyze
	▲ To learn basic knowledge of FET arrays	
	▲ Learn about CMOS process flow	
CO 3	▲ Leaning concept of Cell concepts	Understand
	▲ To learn basic knowledge of FET sizing	
	▲ Learn about design of logic gates	
CO 4	▲ Leaning concept of nFET	Skill
	▲ To understand the FET RC model	
	▲ Learn about Modeling of MOSFETs	
CO 5	▲ Leaning concept of CMOS inverter	Apply
	▲ To learn basic knowledge of NAND and NOR transient response	
	▲ Learn about Gate design	

	PO1	PO2	PO3	PO4	PO5
CO1	3	2	2	3	3
CO2	2	3	2	2	3
CO3	2	2	2	3	2
CO4	3	3	2	3	3
CO5	2	3	2	2	2

(If the correlation between mission statement and program specific outcome is high 3 is assigned, for moderate 2, for low 1, and for 0 are assigned)

EVALUATION SCHEME:

	CO1	CO2	CO3	CO4	CO5	Total
Internal	6	6	6	6	6	30
External	14	14	14	14	14	70
Total	20	20	20	20	20	100

MAPPING COURSE OUTCOME WITH INTERNAL ASSESSMENT (30 MARKS):

	CO1	CO2	CO3	CO4	CO5	
Assignments	1	1	II	1	1	
Seminar	1		1	1	1	
Test (Internal I & Internal II)	2	2	2	2	2	
Attendance	2	2	2	2	2	
TOTAL	6	6	6	6	6	
6 6						

Category	CO1	CO2	CO3	CO4	CO5
Part – A Essay Type (Either/OR-type Question) 14 x 5 =70	14	14	14	14	14
TOTAL	14	14	14	14	14

	LBA-7: LAB VIEW	Credits:2
1)	Write a Lab VIEW program to compute the following Expressions:	HOURS
	(a.) $(a+b+c) - c/d+ab$	3
	(b.) $abc + b/a + log a$	
2)	Write a Lab VIEW program to compute the following Expressions:	3
	(a.) $(a+b)/ca + ac/bc+abc$	
	(b.) $(a+b)(b+c)(a+c)$	
3)	Design a Virtual Instrumentation to verify whether a given number is	3
	Odd or Even.	
4)	Design a Virtual Instrumentation to design and verify the following	
	simple logic operations	3
	(a.) Half Adder	
	(b.) Full Adder	2
5)	Design a VI to convert 4-bit Binary number to Decimal number	3
6)	Write a Lab VIEW program to generate sine wave form using Simulate	3
,	signal and Sine waveform Generator	
7)	Write a Lab VIEW program to obtain frequency domain representation	3
.,	of Sine signal.	
8)	Write a LABVIEW program to find the factorial of the number by using	3
0)	feedback node and shift register?	
9)	Write a LABVIEW program to find sum of the natural numbers by	3
9)		
	using feedback node and shift register?	
	XS AND ASSIGNMENTS:	
2) C	Observation submission	
/	Viva-Voce Practical Examination	

	Course Outcome	Level
CO1	Students can understand the Lab VIEW software tools	Understand
CO2	Students can execute those experiments	Virtual
CO3	Students can utilize the technology to do the experiments	Utilizing
CO4	Understand the virtural instrumentation	Experimental
CO5	Learn basic knowledge of VI programming	Research

	PO1	PO2	PO3	PO4	PO5
CO1	1	2	1	1	1
CO2	1	1	3	1	1
CO3	3	3	2	3	1
CO4	3	2	3	3	1
CO5	2	2	2	2	1

PROJECT WORK

